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ABSTRACT

Hecently, we have shown that the differential properties of the
aces represented by 3D volumic images can be recovered using
their partial derivatives. For instance, the crest lines can be
characterized by the first, second and third partial derivatives
of the grey level function I(z,y,z). This paper deals with the
following points :
e the computation of the partial derivatives of an image can
be improved using recursive filters which approximate the
Gaussian filter,

¢ a multi-scale approach solves many of the instability prob-
lems arising from the computation of the partial derivatives,

¢ we illustrate the previous point for the crest line extraction
(& erest point is a zero-crossing of the derivative of the max-
imum curvature along the maximum curvature direction).
We present experimental results of crest point extraction on 3-1
medical data.
keywords : volumic 3D medical images, surface modelling, cur-
vatures, crest lines, multi-scale derivation, recursive filtering.

I INTRODUCTION

Volumic 3D images are now widely distributed in the med-
ical field. They are produced from various modalities such
as Magnetic Resonance Imagery (MRI), Computed Tomog-
raphy Imagery (CT), Nuclear Medicine Imagery (NMI) or
Ultrasound Imagery (USI). Such data are represented by
a discrete 3D grey level function I(1, 7, k) where the high-
contrast points (3D edge points) correspond to the discrete
trace of the surfaces of the geometrical structures [3]. A
molivatin%issuc is then to extract typical features of these
surfaces. The most natural way is to look for differential Eu-
clidean surface invariants such as : curvatures, crest lines,
parabolic lines, umbilic points... 2, 5, 6]. Recently, we have
shown that the differential properties of a surface defined by
an iso-contour in a 3D image can be recovered from the par-
tial derivatives of the corresponding grey level function [2].
In [2] crest lines are extracted using first, sccond and third
order partial derivatives provided by 3D Deriche filters [3].
The critical point of this approach also studied in [6] is the
stability of expressions including second and third order par-
tial derivatives such as the “extremality criterion” defined
in [2, 6].

&n this paper we propose isotropic recursive 3D filters
to improve the computation of partial derivatives and also
a multi-scale approach to extract the zero-crossings of the
extremality criterion in a better way,

Section Il recalls the main results of [4] about the in-
terest of using isotropic filters to compute differential Eu-
clidean invariants.

Section I deals with the computation of the curvatures
of the surfaces traced by the iso-contours (3D edge points)
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from the partial derivatives of the image (for instance pro-
vided by the previous method), using the main results of
the reference [2] and shows the problems induced by a sin-
gle scale filtering.

In Section IV, we propose to use different widths of fil-
ters to compute the curvatures. This leads to a multi-scale
curvature computation scheme. We apply this principle
to track the zero-crossings of the derivative of the maxi-
mum curvature points along the maximum curvature direc-
tion (extremality criterion) which correspond to the crest
points. The zero-crossings coming from the different scales
are merged using a valuated adjacency graph. Simple and
efficient strategies to extract stable zero-crossings from this
graph, are proposed. Another method using adaptive filter-
ing is also proposed.

In Section V we present experimental results obtained
on real data (a CT 3D image). We show that our approach
combining a multi-scale scheme and also the use of isotropic
filters provides reliable crest lines even for noisy data.

II COMPUTATION OF THE PAR-
TIAL DERIVATIVES OF A 3D IM-
AGE USING LINEAR FILTERS

II.1 Recursive and isotropic filtering

We show in [4] that isotropic filters are required to calcu-
late properly differential Euclidean invariants from images:
if the partial derivatives of an images are computed using fil-
ters derived from an isotropic smoothing filter, then the dif-
ferential Euclidean invariants calculated using these partial
derivatives are also invariants by a rigid motion (Euclidean
invariants).

The reference [2] uses Deriche's smoothing opera-
tor f(z,y,2) fo(z)fo(v)fo(z) with fo(z)
co(1+ & | = |)e~"! where ¢ is a normalization constant.

The advantage of using this function is that we obtain
recursive filters which are optimal for Canny’s criteria in the
direction of the frame axis X, Y, Z. The drawback is that
our 3D smoothing operator f(z,y,z) is not isotropic i.e.
not rotationally invariant. For instance, this implies that
the magnitude of the gradient, or the curvatures, computed
with the corresponding derivative filters are not invariant
by a rigid motion. On the other hand, we also take inter-
est in using separable recursive filters in order to obtain a
reasonable computational cost. A way to join these two an-
tagonist points is to use the recursive approximation of the
Gaussian filter (the only separable non trivial smoothing
filter) introduced by R. Deriche in the recent reference [1].

2

The 1D Gaussian smoothing filter is : G(z) = ¢~ 37

Using Prony’s method described in [1], the positive and

negative part of G and of its normalized derivatives of first

ans second order can be approximated by a 4th order re-
cursive operator (IIR):



h(z) = (ao cos[-uglr) + ay uin{?r}}e‘:,“l +

b

(co cos(“27) + ¢y sin(Z 1))
o o

We also extend this filtering scheme to the third order
derivative and to the 3D case. We develop a set of recursive
filters approximating the Gaussian and its derivatives which
can be used to compute the first, second, and third order
derivatives of a 3D image.

We stress that a very important point not carried out
in [1] is the normalization of the filters which allows to ob-
tain coherent values for the different derivatives. Here we
use the scheme presented in [2] to compute the normaliza-
tion constants. All the details about the normalization con-
stants and the recursive implementation of the filters can

be found in [4].

I1.2 Algorithm to compute the first,
second and third derivatives of a
3D volumic image

a"g
drmayrodza’ i
g = 3 the following algorithm where the convolution prod-

ucts are implemented using the recursive implementation of
the filters :

We obtain for the computation of

for (m,p,q)/(m +p+q) <3do

R=1]
R=Rx*gm(z)
R=R»gp(y)

l'x'ﬂyrxe =Rx gq(2)

1 USING THE PARTIAL DERIVA-
TIVES TO EXTRACT AND
TO CHARACTERIZE 3D STRUC-
TURES OF A VOLUMIC IMAGE

I1I.1 3D edges, curvatures and ridge
points from partial derivatives

Classically, 3D edge detection can be done by computing
the first derivatives (gradient approach) or the Laplacian
(Laplacian approach) of the image. Recently, recursive fil-
tering has been introduced to define 3D edge detection op-
erators having a better noise immunity and a lower compu-
tational cost g{'}] Instead of the recursive filters proposed
in LS], we use the above-mentioned filters to ensure the in-
variance of the features under rigid motion. Then we use
the main results of the reference [2], to compute the curva-
tures, the principal curvature directions and the curvature
derivatives with differential geometry formulas.

III.2 Practical computation of the crest
lines of the surfaces in a 3D image
at a given resolution

The main stages of our algorithm allowing to extract crest
lines in a 3D image are :

1. Computation of the first, second and third order partial

dzmoyraza’ M HPT

;i = 3) using the recursive filters defined in Section 11
or a given value of o ;

derivatives of the image I(z, y, ) (

(3~

. Extraction of the 3D edge points using the first order
partial derivatives (gradient) of I ;

. For each point of the 3D edge map, computation of :

o the two principal curvatures and the correspond-
ing principal curvature directions;
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e the extremality criterion (derivative of the maxi-
mum curvature along the corresponding principal
direction).

. Building of an extremality criterion image C,(z,y, z)
such as at each edge point (z,y, z), Co(x,y, z) is set to
the value of the extremality criterion and to 0 other-
wise;

Determination of an image Z,(z,y, z) set to 1 at each
edge point being a zero-crossing of the extremality cri-
terion and to 0 otherwise.

The last stage of this algorithm consists of finding the zero-
crossings of a function defined on the discrete trace of a
surface (traced by the 3D edge points) which is a difficult
task in 1itself. So far, we have only implemented simple
strategies to extract these zero-crossings. Eut, in order to be
solved properly, this delicate problem needs more attention.
An interesting solution can be found in [6].

Therefore, the final output of our algorithm is an im-
age Zg representing the set of edge points which are zero-
crossings of the extremality criterion. Each value of o de-
fines an image Z, representing the crest line for the scale
defined by o.

IV. MULTI-SCALE APPROACH TO
EXTRACT CREST LINES IN 3D
VOLUMIC IMAGES

IV.1 Why a multi-scale approach ?

As we have seen in the previous section the result of our
algorithms is an image Z, where the zero-crossings of the
extremality criterion are marked. Thus, Z, shows the crest
points for the scale defined by a. Generally, we see that :

e for simple data, we can obtain good results using a
single value for & but the problem of the correct choice
of this value is still open.

e for more complex data the suitable value for o varies
depending on the area of the 3D image ;

e for noisy data, only the crest lines that can be seen
using different scales define reliable features.

Therefore, similar to the edge detection [7] and to the crest
line extraction in depth maps [5], it is of great interest to
use a multi-scale approach. Moreover the recursive imple-
mentation of our filters makes it reasonable in terms of com-
putational cost.

IV.2 Mergin
scale A

In order to merge the results obtained at different scales
0,,1 = 1,n we propose a practical and efficient data struc-
ture that we will call the Multi-scale Adjacency Graph :
Gay,0q,..0, 15 2 valuated graph built as fol-

ﬁ.the results using a Multi-
acency Graph

Gd[_ﬂ:,..,a"-

lows :
1. each node of Gs, 4, o, is attached to a point
(t,7,k) such that for at least one scale o,, we have
Za..(‘;j; k} =1

. the features attached to each node are :

(a) the coordinates of the corresponding 3D point
(4,3, k) 5

(b) the values of the scales for which this point is a
crest point (all the oy, such that Z, (1,7, k) =1);

(c) the differential characteristics extracted for all
the scales : principal curvatures and principal
curvatures directions, value of the extremality
criterion.

3. we define an edge joining two nodes of Gy, 4, o, if
and only if the two corresponding points are adjacent
for the 26-connectivity ;



Therefore Go, 0y, ., represents the results of the crest
point extraction for the different scales and their spatial
relationships. This data structure is particularly efficient
when the stability of the crest point locations through dif-
ferent scales is a good selection criterion. Our experiments
performed on rea? and synthetic data show that generally
the position of the reliable crest points remain the same for
different values of the scale o (i.e. the shifts of the crest
points are less than one pixel).

For instance, the following simple pruning strategy for
the graph G4, o,, o, can be used

I. select all nodes corresponding to points which are crest
points for at least a given number of scales ;

2, select the connected components having at least a given
number of nodes (this threshold corresponds to the

minimal number of points of a crest line).
We come up with the following algorithm :

1. Computation of the zero-crossings of the extremality
criterion for a given set of scales : ay,09,...00 ; the
result is a set of images Z;,, Zq5,...24,;

2. building of the multi-scale graph Gs, ;.. 0, (see sec-
tion 1V.2) :

3. pruning of G 4.4, to select reliable crest points.

IV.3 A multi-scale

using
adaptive filtering

approach

The drawback of the previous method is that, in order to
compute the partial derivatives, the same scale is used at
each point, regardless to the curvature value at this point.
Intuitively, we should use large scales when the curvature is
small and smaller scales when the curvature is large. More-
over, some simple computations show that the computation
of the curvature }with the method described in Section II)
at some points of a circle of a given radinus R can lead to
errors from 20 to 2000 % if the filter-width o is R/50, from
0.04 to 40 % if ¢ = R/10, from 0.04 to 7.2% if ¢ = R/4,
according to the point where the curvature is computed. It
thus seems that the error is all the smaller as the filter-width
is larger. However, this width cannot be too large so that
the smoothing of one part of the shape (say, here, a circle)
does not influence the other parts.

A first estimation of the curvature (or the principal cur-
vatures in the 3D case) can be done with a “reasonable”
scale: in the following experiments, this scale is set to T/8,
where 7" is the smallest of the image dimensions. Since the
shape is roughly a sphere and it is approximately symmetric,
this corresponds to o = R/4, where R is the radius of the
sphere. In that case, the error in the computation of the
curvatures is rather small. Then, the computation of the
partial derivatives and the extraction of the zero-crossings
of the curvature derivative is launched for a given number of
scales; the range of the scales is defined by the minimum and
the maximum of the curvature values throughout the image.
According to the previously estimated curvature value Ky
at a given point, we select the “appropriate scale” at this
point and build the image of the zero-crossings. Practically,
the “appropriate scale” is the closest one to lf%-i + Ko),
for the same reasons as explained before. Therefore, this
method is a kind of adaptive filtering where the value of the
filter-width depends on the shape o% the object.

V  EXPERIMENTAL RESULTS

We present experimental results obtained on real data from
the implementation of the algorithms described in the pre-
vious section.

We have tested our method on two 3D X-ray scanner
images of the same skull taken at two different positions
(see fignres 1 to 6). We have extracted the maxima of the
maximum curvature in the maximum curvature direction.
The stability of the results we obtain for a single scale illus-
trates the rotation invariance of our computation of the cur-
vatures and of the extremality criterion (see section I1). We
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first show the crest point extraction using the mono-scale
approach (o = 5, for a 64*64*64 image), then the thresh-
olding of the multi-scale image (only the points appearing
at at least 3 scales out of 10 are displayed) and finally the
first results obtained with the adaptive filtering. All these
results can then be improved using the graph structure as
above-mentioned. More experimental results on synthetic
and real data can be found in the reference [4]. We point
out that the size of the convolution mask for a direct im-
plementation of a 3D Gaussian of variance o is (8¢)° (for
o =4 we obtain 8192 !). The use of recursive filters of order
4 reduces this computational cost to about 100 operations
per point for any value of o. Of course, the previous remark
applies also for the derivatives of the gaussian filter. There-
fore, even for a single space scheme, the recursive filtering
appears as a crucia Loo?.

VI CONCLUSION

We have presented a multi-scale approach to extract crest
lines of t‘:e surfaces represented by 3D volumic images.
Compared to the method described in [2] we have devel-
oped the following points :

e we show the great theoretical interest in using filters
derived from an isotropic smoothing filter to compute
partial derivatives of an image ;

e we propose to use recursive fillers approximating the
Gaussian and its derivatives to obtain differential char-
acteristics invariant by rigid motion ;

¢ in order to improve the stability of the computation of
the differential characteristics (curvatures, derivative
of the curvature) we use a multi-scale approach.

We stress that the same sketch could be used to extract
other differential singularities such as : parabolic lines, um-
bilic points... Besides, this methodology could also be used
in 2-D images like interior scenes, to extract corners for in-
stance.
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Figure 1: mono-scale approach: the crest points present
at the scale ¢=5 are marked.

Figure 2: multi-scale approach: the crest points present
at at least 3 scales out of 10 (¢ = 1..10) are marked.

Figure 3: multi-scale approach using adaptive filtering:
the scale at each point varies accordingly to the first Figure 6: same as fig. 3 in another position.
estimation of the curvalures.

3





