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ABSTRACT 

Recently, we have shown that the differential properties of the 
surfaces represented by 3D volumic images can be recovered using 
their partial derivatives. For instance, the crest lines can be 
characterized by the first, second and third partial derivatives 
of the grey levrl function I(x,y,z) .  This paper deals with the 
following points : 

the computation of the partial derivatives of an image c a n  
be improved using recursive filters which approximate the 
Gauss~an filter, 
a multi-sale approach solves many of the instability prob- 
lems arising from the computation of the partial derivatives, 
we illustrate the previous point for the nest  line extraction 
(a crest point is a zero-crossing of the derivative of the max- 
imum curvature along the maximum curvature direction). 

We present experimental results of crest point extraction on 3-D 
meclicd data. 
keywords : volumic JD medical images, surface modelling, cur- 
vatures, crest lines, multi-scale derivation, recursive filtering. 

I INTRODUCTION 

Volumic 3D images are now widely distribnted in the med- 
ical field. They are produced from various modalities such 
as Magnetic Resonance Imagery (MRI), Computed Tomog- 
raphy Imagery (CT), Nuclear Medicine Imagery (NMI) or 
Ultrasound Imagery (USI). Such data are represented by 
a discrete 3D grey level function I ( : ,  j, k) where the high- 
contrast points (3D edge points) correspond to the discrete 
trace of the surfaces of the geometrical structures 31. A 
motivatin issue is then to  extract typical features o 1 these 
surfaces. t h e  most natural way is to look for differential Eu- 
clidean surface invariants such as : curvatures, crest lines, 
parabolic lines, umbilic points ... [2, 5, 61. Recently, we have 
shown that the differential properties of a surface defined by 
an is-contour in a 3D image can be recovered from the par- 
tial derivatives of the corresponding grey level function [2]. 
In [2] crest lines are extracted using first, second and third 
order partial derivatives provided by 3D Deriche filters [3]. 
The critical point of this approach also studied in [6 is the 
stability of expressions including second and third or d er par- 
tial derivatives such as the "extremality criterion" defined 

in k %is paper we propose isotropic recursive 3D filters 
to improve the computation of partial derivatives and also 
a multi-scale approach to  extract the zero-crossings of the 
extremality criterion in a better way. 

Section I1 recalls the main results of [4] about the in- 
terest of using isotropic filters t o  compute differential Eu- 
clidean invariants. 

Section I11 deals with the computation of the curvatures 
of the surfaces traced by the iso-contours (3D edge points) 
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from the partial derivatives of the image (for instance pro- 
vided by the previous method), using the main results of 
the reference [2] and shows the problems induced by a sin- 
gle scale filtering. 

In Section IV, we propose to use different widths of fil- 
ters to compute the curvatures. This leads to a multi-scale 
curvature computation scheme. We apply this principle 
to track the zero-crossings of the derivative of the maxi- 
mum curvature points along the maximum curvature direc- 
tion (extremality criterion) which correspond to the crest 
points. The zero-crossings coming from the different scales 
are merged using a valuated adjacency graph. Simple and 
efficient strategies to extract stable zero-crossings from this 
graph, are proposed. Another method using adaptive filtcr- 
ing is also proposed. 

In Section V we present experimental results obtained 
on real data (a CT 3D image). We show that our approach 
combining a multi-scale scheme and also the use of isotropic 
filters provides reliable crest lines even for noisy data. 

n COMPUTATION OF THE PAR- 
TIAL DERIVATIVES OF A 3D IM- 
AGE USING LINEAR FILTERS 

11.1 Recursive and isotropic filtering 

We show in [4] that isotropic filters are required to calcu- 
late properly d~fferential Euclidean invariants from images: 
if the partial derivatives of an images are computed using fil- 
ters derived from an isotropic smoothing filter, then the dif- 
ferential Euclidean invariants calculated using these partial 
derivatives are also invariants by a rigid motion (Euclidean 
invariants). 

The reference [2] uses Deriche's smoothing opera- 
tor : f ( z ,  y,z) = fo(z)fo(~)fo(t)  with fo(z) = 
~ ( l  + a I z 1 )e-a'2' where co is a normalization constant. 

The advantage of using this function is that  we obtain 
recursive filters which are optimal for Canny's criteriain the 
direction of the frame axis X, Y, Z. The drawback is that 
our 3D smoothing operator f ( z ,  y ,z)  is not isotropic i.e. 
not rotationally invariant. For instance, this implies that 
the magnitude of the gradient, or the curvatures, computed 
with the corresponding derivative filters are not invariant 
by a rigid motion. On the other hand, we also take inter- 
est in using separable recursive filters in order to obtain a 
reasonable computational cost. A way to join these two an- 
tagonist points is to use the recursive approximation of the 
Gaussian filter (the only separable non trivial smoothing 
filter) introduced by R. Deriche in the recent reference [I]. 

- ~ 

The ID Gaussian smoothing filter is : G(z) = e - 5  
Using Prony's method described in [I , the pos~tlve and 
negative part of C and of its normalize d derivatives of first 
and second order can be approximated by a 4th order re- 
cursive operator (IIR): 



We also extend this filtering scheme to the third order 
derivative and to the 3D case. We develop a set of recursive 
filters approximating the Gaussian and its  derivatives which 
can be used to compute the first, second, and third order 
derivatives of a 3D image. 

We stress that a very important point not carried out 
in [I] is the normalization of the filters which allows to ob- 
tain coherent values for the different derivatives. Here we 
use the scheme presented in [2] to compute the normaliza- 
tion constants. All the details about the normalization con- 
stants and the recursive implementation of the filters can 
be found in [4]. 

11.2 Algorithm to com ute the first, 
second and third erivatives of a 
3D volumic image 

B 
We obtain for the computation of a"g m + p +  

az-avpazq ' 
q = 3 the following algorithm where the convolution prod- 
ucts are implemented using the recursive implementation of 
the filters :- 

- 

for (m, P ,  q)l(m + P + 9) I 3 do 

R = R * g,(z) 
R = R *  ~ P ( Y )  
I z m Y ~ z q  = R * gq(z) 

I11 USING THE PARTIAL DERIVA- 
TIVES TO EXTRACT AND 
TO CHARACTERIZE 3D STRUC- 
TURES OF A VOLUMIC IMAGE 

111.1 3D ed es, curvatures and ridge 
points 'i rom partial derivatives 

Classically, 3D edge detection can be done by computing 
the first derivatives (gradient approach) or the Laplacian 
(Laplacian approach) of the image. Recently, recursive fil- 
tering has been introduced to define 3D edge detection o p  
erators havin a better noise immunity and a lower compu- 
tational cost ?al. Instead of the recursive filters proposed 
in [3], we use the above-mentioned filters to ensure the in- 
variance of the features under ri id motion. Then we use 
the main results of the reference p2], t o  compute the curva- 
tures, the principal curvature directions and the curvature 
derivatives with differential geometry formulas. 

111.2 Practical computation of the crest 
lines of the surfaces in a 3D image 
at a given resolution 

The main stages of our algorithm allowing to extract crest 
lines in a 3D image are : 

1. Computation of the first, second and third order partial 

derivatives of the image I ( z ,  y, z )  ( a"f m + p +  
azmaypazq  ' 

3) using the recursive filters defined in Section I1 Para given value of a ; 

2. Extraction of the 3D edge points using the first order 
partial derivatives (gradient) of I ; 

3. For each point of the 3D edge map, computation of : 

the two principal curvatures and the correspond- 
ing principal curvature directions; 

the extremality criterion (derivative of the maxi- 
mum curvature along the corresponding principal 
direction). 

4. Building of an extremality criterion image C,(z, y, Z) 
such as a t  each edge point (2, y! z),.C,(z, y, z) is set to 
the value of the extremality cr~terion and to 0 other- 
mse; 

5. Determination of an image Z,(z, y, z) set to 1 a t  each 
edge point being a zero-crossing of the extremality cri- 
terion and to 0 otherwise. 

The last stage of this algorithm consists of finding the zero- 
crossings of a function defined on the discrete trace of a 
surface (traced by the 3D edge points) which is a difficult 
task in Itself. So far, we have only implemented simple 
strategies to extract these zero-crossings. But, in order to be 
solved properly, this delicate problem needs more attention. 
An interesting solution can be found in [6]. 

Therefore, the final output of our algorithm is an im- 
age Z, representing the set of edge points which are zero- 
crossings of the extremality criterion. Each value of a de- 
fines an image Z, representing the crest line for the scale 
defined by a. 

IV MULTI-SCALE APPROACH TO 
EXTRACT CREST LINES IN 3D 
VOLUMIC IMAGES 

1 Why a multi-scale approach ? 
As we have seen in the previous section the result of our 
algorithms is an image Z, where the zero-crossings of the 
extremality criterion are marked. Thus, Z, shows the crest 
points for the scale defined by a .  Generally, we see that : 

for simple data, we can obtain good results using a 
single value for a but the problem of the correct choice 
of this value is still open. 

for more complex data the suitable value for a varies 
depending on the area of the 3D image ; 

for noisy data,  only the crest lines that can be seen 
using different scales define reliable features. 

Therefore, similar to the edge detection [7] and to the crest 
line extraction in depth maps [S], it is of great interest to 
use a multi-scale approach. Moreover the recursive imple- 
mentation of our filters makes it reasonable in terms of com- 
putat,ional cost. 

IV.2 Mergin the results using a Multi- 
scale A 8 jacency Graph 

In order to merge the results obtained a t  different scales 
a,,; = 1, n we propose a practical and efficient data  struc- 
ture that we will call the Multi-scale Adjacency Graph : 
G,, ,,,,...,,. G,, ,,,,...,, is a valuated graph built as fol- 
lows : 

1. each node of G ,,,,,,,..,, is attached to a point 
(i, j, k) such that for a t  least one scale a, we have 
z,,,,(a,j,k) = 1; 

2. the features attached to each node are : 

(a) the coordinates of the corresponding 3D point 
((l , j ,  k)) ; 

(b) the values of the scales for which this point is a 
crest point (all the up such that Z,,(i, j, k) = 1); 

(c) the differential characteristics extracted for all 
the scales : principal curvatures and principal 
curvatures directions, value of the extremality 
criterion. 

3. we define an  edge joining two nodes of Gal,,, if 
and only if the two corresponding points are adjacent 
for the 26-connectivity ; 



Therefore Gq ,,,,,...,, represents the results of the crest 
point ext,ract~on for the different scales and their spatial 
relat.ionships. This data  structure is particularly efficient 
when the stability of the crest point locations through dif- 
ferent scales is a good selection criterion. Our experiments 
performed on real and synthetic data  show that generally 
the position of the reliable crest points remain the same for 
different values of the scale a (i.e. t.he shifts of the crest, 
points are lrss than one pixel). 

For inst.ancc, the following simple pruning strat.egy for 
the graph G ,,,,,,...,, can be used : 

I .  select all nodes corresponding to points which are crest 
points for a t  leist a given number of scales ; 

2. srlcct the connected components having a t  least agiven 
number of nodes (this threshold corresponds to the 
minimal number of points of a crest line). 

\Vr come up with the following algorithm : 

I .  Conlpntat.ion of the zero-crossings of the ext,remality 
crit,erion for a given set of scales : a l , a z ,  ... a, ; the 
result is a set of images Z,, , Z ,,... Z,,; 

2. building of the multi-scale graph G ,,,,,,,. ,, (see sec- 
tion IV.2) ; 

3. pruning of G ,,,,,,...,, to select reliable crest points. 

N.3 A multi-scale approach using 
adaptive filtering 

The drawback of the previous method is that, in order to 
compute the partial derivatives, the same scale is used at  
each point, regardless to  the curvature value a t  this point. 
Intuitively, we should use large scales when the curvature is 
small and smaller scales when the curvature is large. More- 
over, some simple computations show that the computation 
of the curvature with the method described in Section 11) 
at, some p0int.s o k a circle of a given radius R can lead to 
errors from 20 t.o 2000 % if the filter-width a is R/50, from 
0.04 to 40 % if n = Rl l0 ,  from 0.04 to 7.3% if a = R/4, 
according to the point where the curvature is computed. It 
t , h~~sse rms  that the error is all the smaller as the filter-width 
is larger. Tlowevcr, this width cannot be too large so that. 
t . 1 1 ~  smoothing of one part of t,he shape (say, here, a circlc) 
does not influence the other parts. 
A first estimation of the cnrvature (or the principal cnr- 
v a t ~ ~ r e s  in th r  3D case) can be done wit,h a "reasonable" 
scale: in t,he following  experiment,^, this scale is set to T/8,  
where ' I '  is the smallest of the image dimensions. Sir~ce the 
shape is roughly a sphere and it is approximately symmetric, 
this corresponds to o = R l 4 ,  where R is the radius of the 
sphere. In that case, the error in the computat.ion of the 
curvatures is rather small. Then, the computat,ion of the 
partial derivatives and the extraction of the zero-crossings 
of the curvature derivative is launched for a given number of 
scales; the range of the scales is defined by the minimum and 
the maximum of the curvature values throughout the image. 
According to the previously estimat,ed curvature value I b  
a t  a given point., we select the "appropriate scale" a t  this 
point and build the image of the zero-crossings. Practically, 
the "appropriate scale" is the closest one to 1/ 4 * h I :, -or for t h r  same reasons as explained before. There orc t h ~ s  
method is a kind of adaptive filtering where the value of the 
filter-width depends on the shape of the object. 

V EXPERIMENTAL RESULTS 
We present experimental results obtained on real data  from 
the implementation of the algorithms described in the pre- 
vious srction. 

We have tested our method on two 3D X-ray scanner 
images of the same skull taken a t  two different positions 
(see figures 1 to 6). We have extracted the maxima of the 
maximum curvature in the maximum curvature direction. 
The stability of the results we obtain for a single scale illus- 
trates the rotation invariance of our computation of the cur- 
vatures and of the extremality criterion (see section 11). We 

first show the crest point extraction using the mono-scale 
approach ( a  = 5, for a 64*64*64 image), then the thresh- 
olding of the multi-scale image (only the points appearing 
at  at  least 3 scales out of 10 are displayed) and finally the 
first results obtained with the adaptive filtering. All these 
results can then be improved using the graph structure as 
above-mentioned. More experimental results on synthetic 
and real data  can be found in the reference [4]. We point. 
out that the size of the convolution mask for a direct im- 
plementation of a 3D Gaussian of variance a2 is (80)' (for 
a = 4 we obtain 8192 !). The use of recursive filters of order 
4 reduces this computational cost to about 100 operations 
per point for any value of a. Of course, the previous remark 
applies also for the derivatives of the gaussian filter. There- 
fore, even for a single space scheme, the recursive filt.rring 
appears as a crucial tool. 

VI CONCLUSION 

We have presented a multi-scale approach to extract crest 
lines of the surfaces represented by 3D volumic images. 
Compared to the method described in [2] we have devel- 
oped the following points : 

we show the great theoretical interest in using filters 
derived from an isotropic smoothing filter to compute 
partial derivatives of an image ; 

we propose to use recursive filters approximating the 
Gaussian and its derivatives to obtain differential char- 
acteristics invariant by rigid motion ; 

in order to improve the stability of the computation of 
the differential characteristics (curvatores, derivative 
of the curvature) we use a multi-scale approach. 

We stress that the same sketch could be used to extract 
ot.her differrntial singularitics such as : parabolic lines, um- 
bilic points ... Besides, this methodology c o ~ ~ l d  also be usrd 
in 2-D imagrs like interior scenes, t.o extract cornrrs for in- 
stancr. 
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Figurc 1: mono-scalc approach: t,hc crest points prrsrnt. 
a t  thc scitlc 0 = 5  arr  marked. Fig~lrc 4: same as fig. 1 in another posit.ion. 

Figure 2: multi-scale approach: the crest poir~ts present 
a t  a t  least 3 scales out of 10 (a = 1..10) are marked. Figure 5: same as fig. 2 in another position. 

I"ig11re 3: m111t,i-scale approach using adaptive filtering: 
t.hr scale at, rach point varies accordingly to  the first 
cst,imat ion of t hr  cr~rv:~t urcs. 

Figure 6: samc as fig. 3 in another position. 




