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Abstract 
Recent ezperimental results [I] on human &ion show that low 
fractal dimension lines are highly capable to evocate namable ob- 
jects. In other t e r n ,  regular lines are recognized by human vision 
as object edges. In this paper, a regularity measure of discrete 
lines geometry is presented. This quantitative measure based on 
a ratio between lines lengths at different scale is analyzed in the 
framework of brownian motion theory. The measure at a given 
scale is always computed from the mazimum precision image, so 
that it doesn't introduce any sub-resolution assumption. A scale 
choice determines the quantity of global information w. local in- 
formation one wants to measure. We show how this quantitative 
measure lea& to a relevant shape information. To illustmte this, 
an image segmentation application ezample is realized. The seg- 
mentation based essentially on geometry criteria uses a region 
growing process which depends on a single parameter that can be 
Jized in a natural way, comparing contour regularity to a geomet- 
ric model regularity. We pnsent ezperimental results performed 
on real-scene images, including indoor and outdoor images. 

1 Introduction 
Rogowitz and Voss [I] have presented in a recent article a series of 
experiments which shows that a human eye easily saes and "un- 
derstands" curves of low fractal dimension. Curves of that class 
are highly capable to "evocate namable objectsn. In other terms, 
regular lines are recognized by human vision as object edges. And 
in a wide variety of images, the interesting objects are man-made, 
so that they possess the quality of a high geometric regularity. 
For indoor images, objects will be walls, doors, chairs or tables; 
for outdoor images, they will be roads or buildings. It is therefore 
quite interesting to be able to quantify the regularity of an object. 
We present in this paper a new regularity measure for digitized 
curves, which is an attempt to formulate what we call regularity. 
In section 2, we define this measure and we study its theoretic 
ability to discriminate irregular curves from regular curves. Sec- 
tion 3 is devoted to show how this measure can be applied to the 
segmentation of images in which the intersting objets are man- 
made. In section 4, we present experimental results performed 
on real-scene images, including indoor and outdoor images. 

2 The Regularity Measure 
Ractal theory introduces a nice notion of curve regularity with 
the fractal dimension [2], which describes the evolution of the 
curve length as the length measurement takes more and more 
curve details into account. To compute the fractal dimension of 
a curve, one typically counts the number N of balls of radius 
e which are needed to cover that curve, and estimates the limit 
slope of the graph Ins H -1nN when s is close to 0. But a crucial 
problem arises when one wants to study any local property P in a 
digitized curve, which is that all accessible informations are quan- 
tized. What sense can have an expression such as lirn4P(€)? 
As distances are lower bounded by the pixel size, e should always 
be greater that one pixel. To estimate the fractal dimension, it is 
needed to compute the number N at many low scales E = 1,2..n 

pixels, and assume that the graph I m  H -1nN is well described 
by a straight line InN = InL - a . lm,  that is to say the curve 
is se l f s i rn i l  enough. In other words, the fractal dimension is 
representative of a scale range, not of one scale. So how can we 
determine regularity at a specific scale, especially when the scale 
is chosen for a close-to-the-pixel analysis? 

As image processing occurs in a discrete world where the pixel 
size may be not considered as negligible compared to the size of 
the objects represented in the image, we think it's necessary to 
find out a discrete definition of regularity instead of a continuous 
one: we do not want to deal with limits when an & tends to zero. 
The fractal idea of comparison between lengths at  different scales 
seems to us to prefectly w m p o n d  to the notion of regularity. 
In a discrete framework, it is natural to compare the length at a 
detail level (or scale) of 3 pixel to the one at k . s pixels, where 
k is an integer. So let C = be a digitized curve, where p,+l 
is connected to pi. We define the k-regularity at scale s of the 
curve C at the pixel pi as: 

11 Pi+k* - Pi 11 
r*,k(C)(i) = C;=, 11 pi,,, -pi++,,. ) I  

and the k-regularity at scale s of the curve C as ita average value 
along C: 

We can see k M a smoothing parameter. 
Let us present the behavior of the k-regularity on two par- 

ticular digitized c w e s :  the Brownian motion and the digitized 
straight line. These are our models of random irregularity and 
extreme regularity. The brownian motion is a curve where each 
point pi+, has the same probability to be one of four points wn- 
nected to pi, while the digitized straight line is the digitization of 
an underlying continuous straight line, where the position p,+, is 
highly constrained by the positions of ph<;. Figure 1 presents 
the means and varianca, of the k-regularity applied to these 
two curves, for different values of the scale parameter s and the 
smoothing parameter k. Even when s and k are unreasonably 
close to the pixel size, R,,h reveals a pertinent information on 
the curve structure. Although variance is quite important, the 
line regular structure is visible even through Rlt, which should a 
priori reflect nothing but a digitization noise. Of course, as s and 
k increase, the digitization effects are less and leas important, so 
that Ras discriminates more and more between the line and the 
random path. 

So R.* is a tool which is able to compuk regularity at  an 
arbitrary scale, even when the scale is very close to the pixel 
size. Let us see with the next section an application for which a 
closttethopixel analysis is extremely useful. 

3 An application: a regularity crite- 
rion for image segmentation 

A region of a digitized image hss two different aignatures: the 
radiometric one depends on the pixel intensity inside the region, 
and the geometric one depends only on the line in IN' that is 



Figure 1: R,,r - Brownian Motion vs. Straight Line 

the region boundary. Numerous papers deal with segmentation 
based on radiometric models, and these models have been stud- 
ied for a long time [3, 4, 5, 6, 71. Authors [8, 91 have also studied 
the introduction of geometric models in the segmentation pr* 
cess. They consider the geometric analysis as a balance to the 
radiometric analysis. Formalizing the segmentation problem as 
an energy minimization problem, this leads to minimize an en- 
ergy which taken the form E = R + XG, where R wrnputea the 
current partition radiometric deviation from the expected seg- 
mentation, and G the geometric one. The geometric factor, if 
used alone, leads to the trivial segmentation, where the whole 
image is a single region. For Leclerc 181, the geometric part wm- 
putes the length of the region boundaries. h a  and Hanson [9] 
propose more sophisticated criteria, each one dedicated to seg- 
ment a particular class of objects. For example, the geometric 
part of a criterion devoted to find buildings out of aerial images 
takes the form: 

2L 
G=aO+ 

where a is a constant parameter, 0 is the average deviation from 
rr/2 multiples of the angle formed by the contour tangent and an 
fixed direction, L is the contour length and a is a scale parameter. 
So the energy's geometric part is minimum when regions bound- 
aries are composed of segments in two orthogonal directions. 

Pure geometriuc models occur mainly in shape analysis, where 
objects boundaries are considered as already defined and when 
the segmentation proms is over [lo, 11, 121. Our regularity mea- 
sure may be used without being mixed to any radiometric crite- 
rion. Before we show how it is possible, let us explain why it 
is difficult to baae a segmentation process on a pure geometric 
criterion. Following Zucker [7], a segmentation of an image X 
depends on a boolean predicate P, and consists of a set of X- 
subsets {xi): such that: 

(i) {xi): is a partition of X. 

(ii) X, is connected. 

(iii) P(X;) = TRUE for each a. 

(iv) P ( X i  U X,) = FALSE for i # j, where Xi and X, are adja- 
cent. 

The predicate P determine whether a subset Xi is a part of a 
scene object or not. We can interpret (iii) as 'each region belongs 
to at most one object", and (iv) as "each object contains at most 
one regionn. An algorithm can be naturally deduced from these 
points: from an original over-segmentation, that is a partition 
such that P(Xi) = TRUE for each i, loop while possible: 

if 3(i , j ) ,  P(Xi U Xj) = TRUE, then merge Xi and X, 

Let us take a simple example. Suppose we have to segment an 
image composed by two perfectly homogeneous objects: a black 
square on a white background. A 'good" predicate would be: 

The algorithm applied on any over-segmentation of X will lead 
to the true segmentation. But can we now imagine a pure g u ~ -  
metric predicate that will lead to the true segmentation, what- 
ever the original over-segmentation is? Can we geometrically 
decide whether a region belongs to a single scene object or not 
? It is clear that the regions geometry is highly dependent on 
the initial over-segmentation. A region of the over-segmentation 
can have any arbitrary shape, so that the answer of the last 
two questions is NO, there is no over-segmentation independent 
geometric criterion which can lead to the perfect segmentation. 
Thus, if one wants to perform segmentation according to a gee  
metric criterion, one must whether combine it with a radiomet- 
ric one, in a R + XG style for example, or restrain the set of 
over-segmentation to a particular class, a class of admissible par- 
titions. In this paper, we have choosen the latter solution, in 
order to show the effects of our regularity measure only. We have 
constrained the over-segmentation to be py-level subsamplings. 
Figure 2 preaents such an over-segmentation for an indoor image. 
Let us show now that the regularity measure is able to perform 
the segmentation as soon M the initial partition is a grey-level 
subsampling. 

Figure 2: intensity subsampling 

Regions boundaries in this kind of partition can belong to one 
of the two following classes: 

the region boundary is also an scene object boundary. In this 
case, the region boundary inherits the geometric regularity of 
the object boundary. We call this class geometric boundaries. 

the region boundary is not an scene object boundary. H e n ,  
the region is stopped arbitmar, depending on its texture or 
surface noise. We call this class teztuml boundaries. 

Textural boundaries are irregular according to a close-to-the-pixel 
analysis, while geometric boundaries are regular. Our regular- 
ity measure should thus be able to distinguish the two classes 
of boundaries: textural boundaries are leas regular than a cer- 
tain threshold, geometric boundaries am more regular than this 
threshold. 

4 Experimental Results 
We have involved our regularity measure in a region-growing algo- 
rithm. Since we are interested in the close-tc-thcpixel behavior 



Figure 3: The two classes 

of the curves, we have chosen R z , ~  to discriminate textural bound- 
aries from geometric boundaries. We have fixed the threshold 
value to 0.92, which is a numeric approximation of the minimum 
regularity of the straight line. That means that the straight line 
is our model of regularity. The algorithm is inspired by the 8ub- 
optimal segmentation algorithm propoaed by Monga [13]. The 
problem is that the formalism used by Monga, which follows the 
one presented by Zucker in [7], is not strictly applicable to a 
segmentation based on geometric criteria. Recall that a segmen- 
tation of an image X following a boolean predicate P should be 
a set of regions {xi); that is constraint by the four properties ( 
(i) to (iv) ) exposed in section 3. The choice of same predicate P 
to determine whether a subset of X belongs to a single region or 
not, and to determine whether two subsets of X should merge or 
not, disables the possibility of using pure geometric predicates. 
To be more precise, each predicate that takes care only of what 
happens at the border of a subset is prohibited. In our case, two 
distinct objects may be merged, even if our criterion has decided 
that they were actually distinct. 

These considerations lead us to adopt the following formalism: 

(i) {xi); is a partition of X.  

(ii) Xi is connected. 

(iii) P,(X,) = TRUE for each i. 

(iv) Pm(Xi, X,) = FALSE for i # j, where Xi and X j  are adja- 
cent. 

We have to use two different predicates, a region predicate P, 
which tests the ability of a subset to belong to a single object, 
and a merging predicate P, which tests whether two subsets can 
belong to the same object or not. Pm(X,, X,) must be FALSE if 
P,(X, U X,) is. For example, if we want to process a segmentation 
arrording to the regularity criterion, P, would always be TRUE, 
and Pm(X,, X,) would stand for: " the common frontier between 
Xi and X, is a textural boundary". Note that one can choose 
Pm(Xi, X,) = P,(XiU X,), in which case one come ba& to the 
Zucker formalism. 

Monga proposes the use of a function that controls the quality 
of a segmentation. This function formalizes the stmtegic aspect 
of region growing. We use a function named dQ(Xi, Xj) which 
quantifies the quality increasing of the segmentation when merg- 
ing X, and X,. 

Given an initial segmentation, the algorithm loops while pos- 
sible on the three following points: 

determine the merging list, i.e. the list of Pm-mixable adja- 
cent pair of subsets; 

sort the merging list according to dQ; 

merge the best independent pairs. 

We present now the application of the algorithm on several 
grey-level images. Beginning with an intensity sub-sampled im- 
age, segmentation is performed in two steps: 

small regions merging: small regions m o t  be &ciently 
treated by the regularity criterion, since their boundaries 
contain a very poor geometric information. At this step, 
Pm(Xi,Xj) is TRUE if the length of the boundary of Xi 
is less than N pixels, where N has been arbitrary fixed to 
10. P,(Xi) is always TRUE, and dQ(Xi,X;) increases as the 
average gradient along the common frontier decreases. Since 
the best independent pairs merge, a small region merge with 
exactly one of its neighbors. 

regularity merging: P,(Xi, X;) is TRUE if the regularity 
R2., of the common frontier is lower than a regularity thresh- 
old. The threshold's value is 0.92, as discussed previously. 
P,(Xi) is TRUE whatever Xi is, and dQ(Xi, X,) is equal to 
Pm(Xi,Xj). 

Figure 4: indoor processing 

Figure 5: airport processing 

In the following figures, the upper-left image (A) is the grey- 
level image, the upper-right image (B) is the grey-level subsam- 
pling, the lower-left image (C) is obtained from (B) by removing 
amall regions, and the lower-right image (D) is obtained from (C) 



by applying the regularity merging. Figure 4 shows the segmen- 
tation processing on an indoor image. This first result shows our 
regularity criterion's ability to detect irregularity in a practical 
case. One can see that each irregular boundary in image (C) has 
been removed in image (D). Some other boundaries seem to have 
also disappear, in the poster on the right wall for example. In 
fact, this is not the case. Merging occurs here because there are 
regions of the intensity subsampling which belong to both the 
poster and the wall. These regions present irregularity against 
the wall, and irregularity against the poster, so that the poster is 
finally merged to the wall. This kind of problem is actually due to 
an incompatibility between our definition of acceptable partitions 
and the definition of over-segmentation (see section 2). 

Figure 5 shows the segmentation processing on the aerial im- 
age an airport. The airport shows another direct application of 
the method described in this paper. Main stmcturea have been 
correctly segmented, but some objects such as the group of trees 
on the upper-left corner have disappeared. This is due to the sim- 
plicity of the strategic function dQ we have used. Better results 
are obtained with the same merging predicate, but with more 
sophisticated strategic functions which quantify a confidence we 
can have in the regularity measure. 

5 Conclusions 
We have presented in this paper a mt of geometric measures that 
quantify regularity of digitized curves. These measures have been 
theoretically tested on modelsof irregular and regular curves, the 
Brownian Motion and the digitized straight line. One of our reg- 
ularity measure has been involved in a region-growing segmen- 
tation algorithm, and has shown its practical ability to perform 
segmentation on images where interesting features are man-made 
objects. In this paper, we have only use the regularity criterion 
as the decisive criterion. But it is possible to have it cooperate 
with other criteria, and in particular with radiometric criteria. 
Cooperation with radiometry may occur in two ways: 

a the strategic function decides which mergings should come 
first; 

a the initial radiometricover-segmentation gives its input data 
to the geometric criterion; 

We have found two limitations on the use of the regularity 
mesure. The first one is that the regularity messun takes a 
pratical sense only if the length of the curve is large enough com- 
pared to the scale parameter. Our current work is to precise the 
confidence one can have in the regularity measure, depending 
on the length of the analysed curve. The second one is that in 
the segmentation p-s we proppose, the initial segmentation is 
highly constrained by the fact it must be an admissibilitv ~ a r t i -  - .  
tidn, so that a few radiometric criteria can be used here. In some 
cases, the admissibility criterion may be in conflict with the over- 
segmentation criterion. We have to find now is another and larger 
class of admissible partitions which eliminates that contradiction. 
One possible way is admissiblefrontiers instead of admissible par- 
titions. The admissiblefrontiers would be the only frontiers to be 
allowed to disappear in a region merging. This would lead to a 
larger class of geometric-unstable over-segmentations, and would 
allow many radiometric criteria to be used in the presegmentation 
process. 
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