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ABSTRACT 

Many real world objects have variable appearances be- 
cause they are flexible and/or have a variable number 
of parts. These objects cannot be easily modeled using 
current object recognition techniques which require the 
models to have a certain number of recognizable fea- 
tures with fixed relationships. We propose the use of a 
knowledge representation called the VAPOR (Variable 
Appearance Object Representation) model to represent 
objects with variable appearances. The VAPOR model 
is an idealization of the object; all instances of the model 
in an image are variations from the ideal appearance. An 
energy function quantifies how much variation is neces- 
sary to change the ideal object prototype to match a 
given set of objects in the image. The energy function 
is defined as the description length of the data given 
the model, i.e. the number of information-theoretic bits 
needed to represent the model and the deviations of the 
data from the ideal appearance. The shortest length 
model is chosen as the best description. We demonstrate 
how the VAPOR model performs in a simple domain of 
circles and polygons and in the complex domain of find- 
ing cloverleaf interchanges in aerial images of roads. 

1 INTRODUCTION 

Most object recognition systems exploit the fact the fact 
that rigid objects have a fixed set of features (more or 
less invariant to viewpoint) and a fixed set of relations 
between the features. This prevents the modeling of 
non-rigid objects and objects with varying numbers of 
parts. For example, bushes have a variable number of 
branches and the relative branch positions are unknown, 
a priori. A candle has varying diameter, color, and shape 
when it is new, and the amount that has burned also 
changes its appearance. A lion may be seen walking, 
running, lying, or sitting; each condition implies differ- 
ent constraints on the relationships of its body parts. 

The definition of an object as a variation from an 
ideal prototype is the basis for our object representa- 
tion. Instead of modeling an object as a group of lower 
level features with fixed (or parameterized) spatial re- 
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lationships, we will model an object as a set of parts 
with an associated set of constraints. All models can be 
"matched" to a given set of data, but as more constraints 
are violated the cost of the match will increase. Since we 
are only concerned with the appearance of these objects 
in images, we call our model the VAPOR model (Vari- 
able Appearance Object Representation) to signify that 
it does not represent other aspects of the object such as 
it's function or composition. 

Even though the objects have variable appearance, 
we expect to be able to decompose the object into parts. 
The parts, in turn, will be represented by the same 
type of structure, forming a hierarchical model. In sim- 
ple terms, an instance of a VAPOR model is a set of 
other VAPOR instances that is varied to minimize an 
energy function that measures the degree of fit of the 
constraints. We will search for low energy instances of 
a VAPOR model by adding and deleting parts to and 
from the set of current parts. 

VAPOR models also explicitly represent the param- 
eters associated with the appearance of the object. A 
parameter can be any quantity that can be estimated 
from the set of component VAPOR instances. Param- 
eters can include such quantities as the six degrees of 
freedom for the position and orientation of a rigid part, 
or the number of parts in the object, or the partial or- 
dering of the depths of the objects in a given scene. The 
parameters are functions of the current set and can in- 
fluence the addition and deletion of other elements to 
and from the set. 

In order to compare VAPOR instances using dif- 
ferent models, we use a common energy function scale 
based on description length modeling theory [8]. Mini- 
mum description length theory claims that the best de- 
scription of a set of observations using a given descrip- 
tion language is the shortest description. 

The VAPOR model was motivated by several other 
shape and object representation strategies. Terzopou- 
los, Witkin, and Kass use a finite element simulation of 
an elastic sheet undergoing deformation in response to 
Uforces" [lo] to create what have been termed "snakes" 
(71 and are more correctly called "active contour and 
surface models." Fua and Hanson use the smoothness 
constraint of Terzopoulos et al. (in the form of an energy 
function as opposed to simulated forces) plus new model 
constraints such as rectilinearity of edges in their imple- 
mentation of active contours [4,5]. They use description 



length theory in the construction of their energy func- 
tions, but don't adhere strictly to Rissanen's definition. 

Brooks' ACRONYM system has a similar recursive 
part-whole hierarchy of object models and allows ob- 
jects to have a variable number of parts [I]. In contrast, 
the VAPOR system is not limited to a fixed geometric 
representation of parts such as generalized cylinders and 
the constraints between parts can be more than simple 
inequalities of scalar parameters. The description length 
energy function provides a measure of how well a model 
fits the data as opposed to ACRONYM'S binary decision 
of whether or not all the inequalities can be satisfied si- 
multaneously. 

Segen models nonrigid objects with probabilistic hy- 
pergraphs [9]. The nodes of the hypergraph represent 
shape primitives and their relations. The system builds 
a hypergraph of relations between each shape primitive 
in the image and n of its "nearest neighbors." The re- 
sulting hypergraph can be matched to a probabilistic 
hypergraph representing an object model. Segen's sys- 
tem learns a class model from a group of training im- 
ages, and can effectively adjust the probabilities to allow 
object recognition that is invariant to some non-rigid 
shape variations. The method, however, is sensitive to 
the stability of the extracted shape primitives, and some 
changes in appearance - such as changing the number 
of parts - will require multiple models. 

2 THE V A P O R  MODEL 

VAPOR instances perturb a set of other VAPOR in- 
stances, representing parts of an object, in order to find 
a minimum of an energy function. The VAPOR instance 
perturbation proceeds by adding elements to or deleting 
elements from the set. 

The VAPOR model itself represents an object and 
the set of other VAPOR models represents the compo- 
nent parts of the object. For example, a polygon VA- 
POR model could consist of a set of straight edges that 
make up its sides. Each straight edge, in turn, can be 
represented as a VAPOR model containing edge pixels 
that are grouped together to form a line segment. 

The flexibility of active contour and surface models 
make them good for representing constrained variations 
in shape. The VAPOR model is good for describing the 
component parts of an object as well its variable shapes. 
Many degrees of freedom are represented in such models, 
including some that are unrelated to object shape. To 
represent these other degrees of freedom, we allow our 
models to have any number of parameters in addition to 
the set of component VAPOR models. The parameters 
are estimated from the set of components and the input 
data. A polygon VAPOR model might have a parameter 
that quantifies the color of the interior of the polygon. 

2.1 V A P O R  instance optimization 

Since a VAPOR model does not always correspond to 
a physical boundary in the way active surfaces do, we 
cannot use the analogy of a sheet deforming in a viscous 

fluid to motivate the optimization. Instead, we adopt 
the use of an energy potential function for our VAPOR 
models and minimize that potential to find the "best 
instancen of the object. The energy function uses the 
set of component VAPOR instances and the estimated 
parameters to determine how well the model fits the 
data. In Section 2.2, we describe why description length 
is a good choice for the energy function. 

Since the energy function will depend on the contents 
of the set of parts, we will not know the "derivativesn of 
the energy function - there is no derivative with respect 
to a set. Several methods exist for optimizing multi- 
variate functions without knowing the derivatives with 
respect to each variable. We use a non-deterministic 
method that can avoid most of the local minima in the 
energy function [3]. The method is an iterative one that 
adds or removes an element to or from the set at each 
iteration. After each addition or deletion, the parame- 
ters of the model instance are estimated and recorded. 
The new parameter values are used to determine the in- 
stance's energy and are often used by a likelihood func- 
tion which determines the probabilities of adding candi- 
date elements to the set. For example, a straight edge 
VAPOR instance which collects edge points from the 
image (pixels of high gradient magnitude) might esti- 
mate the parameters of a line passing through the set 
of points. The likelihood function for an edge point, p, 
could be the reciprocal of the distance of p from the 
estimated line, so edge points lying nearest to the line 
are the most likely to be added to the set. The other 
edge points may still be chosen by the non-deterministic 
selection procedure, but they have lower likelihood. 

2.2 Minimum description length 

In order for competing VAPOR models to be compared, 
we need some kind of metric to measure which model is 
more appropriate for any given data. Since our model, 
by definition, has a related energy function, it would be 
advantageous to use that energy function as the metric 
for comparing instances of different model types. The 
energy represents the amount of deviation from the ideal 
appearance of the object. The problem then is to find 
a common scale for comparing the deviations of all the 
VAPOR models. This is not an easy problem. Consider 
comparing a lion without a tail against a table missing 
one leg (even though it is very unlikely that any given 
scene could lead to both of these descriptions being com- 
pared). Are these equivalent variations (deviations)? 

Since we must choose the most appropriate model us- 
ing the energy function, the energy function must mea- 
sure the complexity of the model as well as how well 
the data fits the model. If model complexity were not a 
factor, then models with more degrees of freedom would 
always be chosen over simpler models, because the fit 
to the data would be better. The theory of minimum 
description length [8] incorporates both factors by using 
the length of the description of the data in terms of the 
model. 

Rissanen defines the description length of a model 
and the data it describes as "the total number of bi- 



nary digits required to rewrite the observed data, when 
each observation is given with some precision." Rissa- 
nen mathematically defines the length as a sum of two 
terms for fixed families of models: 

L(x, 0) = - log, P(xl0) + L(0) 

where x is the observed data, 0 is the model in the form 
of a vector of k parameters, and L(0) is a term express- 
ing the complexity of the model 0 as the number of bits 
necessary to represent the k parameters of the model. 
The first term on the right side of the equation expresses 
how well the data fit the model; when the probability 
of the data given the model is low, the first term grows 
large. The negative binary logarithm of the probability 
yields the smallest number of bits required to encode 
the data "relative to the assumed statistical model of 
the data" [B]. The second term quantifies the number of 
bits needed to represent the model alone. The model is 
usually a collection of parameters that are represented 
by integers within a specific range or reals with a cer- 
tain precision. Rissanen developed a universal prior for 
quantifying the number of bits needed for both types of 
parameter. 

VAPOR models can use description length as their 
energy function, even though their shapes may have 
numbers of degrees of freedom that approach infinity. 
This is possible for two reasons. Most variable objects 
can be modeled with a finite number of parameters and a 
set of variations that allows an infinite number of shapes. 
Secondly, the finite resolution of the data means that 
only a finite subset of the infinite number of appear- 
ances are perceivable. 

2.3 Implementation notes 

To put minimum description length theory into practice, 
the probability densities, P(xlO), and the length of the 
model, L(O), must be defined for each model. To specify 
the description length of a variable object, a minimal set 
of parameters that fully characterize the object must be 
defined. The conditional probability is what determines 
the "cost" of the variations from the ideal model. 

One important aspect of the conditional probabilities 
used for the description length computation is that they 
do not need to be normalized so that the sum of P(xilO) 
over all possible values of xi is 1. This is because there 
may be multiple possible values for xi that all have a 
probability of 1 (e.g. the positions of the vertices of an 
n-gon). In effect, relaxing this normalization constraint 
permits the object to have multiple appearances that 
are all equivalent to the ideal appearance of the object. 

In our implementation, the description length is the 
number of bits required to represent the essential pa- 
rameters of the model. A VAPOR model can have other 
parameters which are used only for the convenience of 
computing the conditional probabilities. 

In order to use minimum description length, the data 
must be partitioned into groups such that all the data 
in a group belong to the same model. The description 

length of each group and its model are summed to com- 
pute the description length of the entire data set. In 
order to find the minimal length description, all pos- 
sible partitionings and labelings must be explored. In 
general, our computational resources are insufficient for 
an exhaustive search of such a huge search space, so 
other methods must be used. 

Using a "divide and conquer" strategy causes prob- 
lems because description length should be computed 
globally while local interpretations of regions of data 
will not always form a complete, mutually exclusive par- 
titioning of all the data. We can partially solve this 
problem by assuming that each VAPOR instance covers 
a part of the total data set and that all the rest of the 
data is modeled by some simple default model. The de- 
fault model is the model of the "background" on which 
the objects will be seen. The background, of course, is 
not always known a priori, but all that is necessary for 
our purposes is a simple model of "uninteresting" data 
such as uniform color or gray level. Using the back- 
ground model, VAPOR instances increase in size until 
the energy caused by modeling more image data with 
the VAPOR model is higher than that of modeling image 
data with the background model. We refer to these two 
components as the internal and the background energies, 
respectively. The sum of the two energies allows differ- 
ent vapor instances to be compared on the same data 
set (i.e. the entire image). To compute these quantities 
for every VAPOR instance, we require each instance to 
maintain a parameter named area that represents the 
region in the image that is considered internal to the 
instance. 

3 SYNTHETIC DATA EXAMPLE 

To illustrate VAPOR models we will describe how the 
system works in a simple synthetic domain. The domain 
consists of images containing combinations of uniform 
gray level polygons and circles. We use VAPOR models 
for polygons, circles, their combinations, and their con- 
stituent pieces. The MOSS search procedure described 
in [3] will be used to find instances of these models. 

3.1 Partlwhole hierarchy 

The VAPOR models are organized by a partfwhole hi- 
erarchy that makes explicit the relationships between 
the different types of models. Each model's component 
parts and parameters are marked by special fonts when 
used in this text. At the highest level we have a VA- 
POR model for scenes of polygons and circles. The 
scene model's component parts are, of course, poly- 
gons and circles. The polygons and circles are composed 
of straight edges and circular edges, respectively. Note 
that a circle normally only has a single circular edge, but 
we assume that the data are noisy and several concen- 
tric circular edge fragments could be grouped together 
to form a circle. The models for straight and circular 
edges are composed of edge points which are pixels in 
the image that are local maxima of gradient magnitude. 



The edge points are given as input to the search; they 
are not created during the search process. 

The straight edge VAPOR model collects edge points 
that are collinear. Similarly, the circular edge model 
collects edge points that are co-circular. Two param- 
eters called line and circle hold the values defining 
the attributes for the straight and circular edge models, 
respectively. The parameters are estimated from the set 
of edge points after each addition or removal of an edge 
point from the set. All of the models have an area pa- 
rameter and a background is constant energy component 
as described in Section 2.3. An overlaps parameter rep- 
resents the partial ordering of the elements of the scene 
model. If one element of the scene occludes another 
element, the overlap relationship is recorded in this pa- 
rameter. For more detail on the implmentation of these 
models, please see [3]. 

3.2 Example 1 

Figure 1 shows a synthetic 100 x 100 image of three 
equal size circles with a wedge shaped section missing 
from each one. Kanizsa showed that a similar figure 
produces a subjective contour of a triangle that occludes 
parts of the circles (the wedges) [6]. Since the triangle 
has the same gray level as the background, no edges 
appear between the triangle and the background, only 
between the triangle and the circles. 

Figure 1: Test image 1: Three large, deformed circles 

Our experiments show that the minimal length in- 
terpretation of Figure 1 is a (3 sided) polygon occluding 
three circles. After applying non-maximum suppression 
to the gradient values produced by the Sobel gradient 
operator, there were 426 edge pixels. These edge pix- 
els were given to the MOSS procedure as edge point 
instances. 

The procedure chooses an edge point instance hav- 
ing minimum energy and tries one of the models that 
uses edge points. The search procedure can take sev- 
eral actions, building a parent instance, building a child 
instance, building a sibling instance, splitting the cur- 
rent instance, or temporarily abandoning the instance to 

work or more promising instances or to let the instance 
become part of some existing, partial instance. In this 
way the procedure builds a part/whole instance graph. 

In the case of Figure 1 a polygon instance collects 
the edges of the subjective triangle (3 subjective from 6 
real straight edges - 3 pairs of collinear edges) and finds 
a model instance that has lower energy than the back- 
ground model (even though its energy is non-zero due 
to the lack of complete edges along its perimeter). The 
scene instance collects the circle instances and the poly- 
gon instance into its scene set and determines that the 
~olygon occludes the circles because that interpretation 
has lower energy. This is the final result of the search. 

If we change the parameter controlling the descrip- 
tion length of the background energy (namely increasing 
the standard deviation of the 'uniform gray levels"), 
MOSS interprets the image as three deformed circles 
with no occluding polygon. Thus, the point at which the 
occluding triangle interpretation has shorter description 
length is controlled by the relative costs of the back- 
ground and object models. 

4 REAL DATA EXAMPLE 

Cloverleaf interchanges in road networks are a good ex- 
ample of a structure with a variable appearance and a 
variable number of parts. At cloverleaf interchanges, 
n roads meet (2 <= n <= 5?) and there exist r ramps 
(1 <= r <= 2(n - 1)2n) connecting them in a restricted 
topology. Figure 2 shows some of the many possible con- 
figurations of cloverleaf interchanges. The various differ- 
ent kinds of cloverleaf interchanges could be enumerated 
by the numbers and types of their components and then 
modeled with several different, deformable models (such 
as standard snakes), but the power of the VAPOR model 
allows us to use a single model definition. 

Figure 2: Some types of cloverleaf interchanges 



In our model, the long, intersecting roads will be  
called the axes of the interchange while the short roads 
that provide the connections between the axes will be 
called the ramps (shown as black and dark gray, respec- 
tively, in Figure 2). We define a part/whole hierarchy 
of VAPOR models for this domain like we did for the 
circles and polygons, but this time the inputs are curvi- 
linear feature fragments [2]. The  part/whole hierarchy 
has models for divided highways, roads (undivided high- 
ways), junctions, cloverleaf interchanges, and the input 
curvilinear features (CLF). 

Figure 3a is an 80 x 88 window of an image gener- 
ated by NASA's thematic mapper simulator. The  orig- 
inal image is a seven band image, and the monochrome 
image used here is the result of a weighted sum of bands 
1 and 5. Figure 3b shows the 28 CLFs extracted from 
Figure 3b (adjacent and overlapping segments appear as 
a single segment in the figure). 

When we run MOSS to search for an instance of the 
cloverleaf model using a t  least 80% of these CLFs, the 
final result is the cloverleaf instance shown in Figure 
4. The solid black lines indicate the highways labeled 
as the cloverleaf interchange axes, while the ramps are 
shown in dark gray with arrows indicating their traffic 
direction (assuming a right-hand driving rule). Some of 
the arrows are obscured by the black roads. All roads are 
drawn with a width of one pixel, since their true widths 
are not estimated. T h e  circle indicates the center of the 
cloverleaf interchange, and the thin black line within 
the circle shows the estimated tangent for the divided 
highway a t  the cloverleaf center; a similar tangent line 
for the crossing road is obscured by that  road. The 
light gray region indicates the pixels that  are part of the 
cloverleaf model's area parameter. 

The  breakdown of the energy components shown in 
Figure 4 reveals that  the the model instance fully sat- 
isfies the following constraints: axes meet a t  junction, 
ramp directions are consistent, sensible continuations, 
and no redundant BCLFs. There is, of course, some cost 
for the number of bits needed to represent the model 
(cloverleaf base cost), the costs of the component roads 
and junctions (low road and junction energy), and the 
cost of representing the rest of the image as  a constant 
(outside is constant). The azes are fully interconnected 
constraint is not fully satisfied because the model shows 

Figure 3: Test image 2: Cloverleaf interchange (a) and 
its extracted CLFs (b) 

that only four pairs of traffic directions are linked while 
up to eight links are possible (the more horizontal axis 
road is assumed t o  continue on to the left and thus is 
missing connections). The high speed interchange cost is 
non-zero because both connections of the leftmost ramp 
to the horizontal and vertical axis roads form angles 
greater than 45'. The  five figure costs of these "insignifi- 
cant" deviations may seem high on an absolute scale, but 
they are tiny compared to the background energy term. 
One of the ramps (the one in the lower right corner) is 
incorrectly labeled and should be  part of the more hori- 
zontal axis road. This is due to  the fact that  the part of 
the axis road that  crosses the divided highway is not the 
best extension of the mislabeled ramp; the ramp above 
it is almost collinear. The mislabeled ramp, however, 
does not greatly affect the cloverleaf interchange model. 

The  overall energy of the cloverleaf instance totals 
1,126,815.0 which is less than the background reference 
energy, 1,292,064.9 (i.e. the cost of modeling the en- 
tire image as a constant gray level modified by additive 
white Gaussian noise with a standard deviation of 1 gray 
level). The  difference may seem small, but that  is due t o  
the fact that  the background model covers most of the 
image (about 75% for this instance of the model) and 
greatly outweighs the foreground components. 

CLOVERLEAF-43 
CLOVERLEAF-BASE-COST 640.0 

AXES-MEET-AT-JUNCTION 0.0 

AXES-ARE-FULLY-INTERCONNECTED 41970.9 

HIGH-SPEED-INTERCHANGE 51425.5 

RAM!?-DIRECTIONS-ARE-CONSISTENT 0.0 

SENSIBLE-CONTINUATIONS 0.0 

LOW-ROAD-AND-JUNCTION-ENERGY 58958.2 

NO-REDUNDANT-BCLFS 0.0 

OUTSIDE-IS-CONSTANT 973820.4 

total = 1126815.0 

Figure 4: Interpretation for test image 2 



5 CONCLUSIONS 

The VAPOR model is a new representation that can be 
used to represent the variable appearances of a single 
object or object class. Objects with varying shape and 
number of parts can be successfully recognized using this 
model. The energy function is defined as the description 
length of the data in terms of the model. This allows 
the energy function for different kinds of objects to be 
measured on the same scale and, as a result, used to 
decide which model is better. 
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