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ABSTRACT In the second part of the article we demonstrate how 
the VIP-chip is able to perform the computation at 

This Paper consists of two Parts. In the first Part near-video rate (11-15 frames/second). ~h~ m - c h i p  
we describe how to compute optical flow from second is by a control unit and a limited set of 
derivatives. In the second part we describe the VIP external memories. 
chip and how this chip can compute a 512x512 optical 
flow field at nearly full video rate. 

OPTICAL FLOW FROM SECOND DERIVATIVES 

The basic equation for optical flow is given by (1). 
INTRODUCTION 

fx.u + f , . v + f ,  = 0 (1) 
Optical flow is a means for the analysis of image 

sequences. In particular it should be helpful in 
segmenting rigidly moving objects from a non-moving 
background or from a background the movement of 
which could be predicted. The latter case is very often 
at hand when the image sequence comes from a 
moving camera in a 3D-world. The potential 
applications of optical flow and various segmentation 
algorithms based thereof are to be found in target 
tracking, automatic inspection, computer vision for 
autonomous robots and vehicles and related areas. 

These applications have been slow in coming 
because of computation complexity and high cost. In 
this paper we will address this problem in two ways. 
Firstly, we advocate the use of second derivatives to 
solve the optical flow equation explicitly. Secondly, we 
will present a new chip, called WP (VIdeo Processor), 
which comprises 512 bit-serial processors and seems 
rather ideal for the task. 

In the first part of the article we demonstrate that 
one can obtain a useful optical flow field from the 
second derivatives using the following computations. 

- 25 to 50 operations of type addition or 
subtraction, the number depending on noise 
levels which require more or less smoothing 
in the operators. 

- 6 multiplications 

- 2 divisions 

Like some other authors [I], [2] we make the 
smoothness assumption that the derivatives of the flow 
components (u, v) are zero. Then, the derivative in 
x and y of (1) gives us two equations from which we 
explicitly can obtain both u and v. 

This method of obtaining the optical flow requires 
that we compute (estimate) the five second derivatives 

throughout the 3D space (x, y, t). 

The so called aperture problem for computation of 
optical flow manifests itself in the denominator 

G = &-f~, which is nothing but the Gaussian 

curvature for the f(x, y) surface. When the local 
variation in f(x, y) is one-dimensional only, the 
Gaussian curvature is zero and in this case we cannot 
estimate the optical flow. The two equations (2) and 
(3) will then deliver a result of type 010 which is 
undefined but a quite reasonable response under the 
given circumstances. In fact, the quantity [GI can be 
used as a certainty factor in a post-processing 
procedure to resolve ambiguities and enforce global 
coherence as will be shown below. 



We intend to implement the computation of (2) and 
(3) in a manner described by Figure 1. The second 
derivatives are effectively computed from first 
derivative estimators in two steps using a 3 x 3 ~ 3  kernel 
of the type shown in Figure 2. 

The net result is that the second derivatives are 
computed from a 5 x 5 ~ 5  neighborhood which make 
them remarkably noise insensitive. The suggested set 
of kernels can be seen as generalized Sobel filters and 
are perfectly decomposable which makes it possible 
to compute all derivatives using only 17 additions and 
8 subtractions between nearest neighbors [3]. 
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Figure 1 

Figure 2 

To enforce local coherence (smoothness) we propose 
the following. Let us introduce the notation for the 
numerators and denominators of the (u, v)-vector in 
(4). 

A smoothed result (U, V) from a neighborhood 3 
of the (u, v) image using IGl as a weighting factor can 
then be computed as 

where the sums are computed over the given 
neighborhood and the subscript i indicates a pixel 
position, within the neighborhood. As seen from (5) 
we manage to simplify this computation into averaging 
the two numerators and the common denominator G.. 

The above procedure has been implemented and 
tested on a number of sequences. The result (U, V) 
is a vector field which one preferably should present 
as a color-coded image. In short of this we can only 
state here that the result seems fully comparable, if  
not superior, to more computation demanding iterative 
solutions. 

THE VIP CHIP 

The VIP (VIdeo rate Processor [4]) has a floor-plan 
according to Figure 3. A memory array of 512x256 
static bit-cells is surrounded on two edges by two 256 
linear arrays of processors. Each processor accesses 
one column of 256 bits of the on-chip 512x256 
memory. The 512 processors are identical and each 
one consists of four major parts, each part forming 
two 256-element arrays as shown in Figure 3. 
Functionally, the chip is a 512-processor system 
organized as a linear array. The two shift registers 
serve as the necessary means of communication 
side-wise. The VIP is an SIMD-machine. Hence, there 
is a common controlladdress bit-vector which is 
generated in an off-chip control unit. 

32 bit lines tdfrom off-chip memory 
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Figure 3 

One of the 8-bit shiftregisters are used for 
inputloutput of video formatted data. With 20 MHz 
clock rate the bandwidth is 20 Mbytets. Notice that 



both shiftregisters can transfer data in both directions. 
For intermediate data the chip communicates over 64 
bit-lines to off-chip memory modules. In what follows 
we assume that these memories are fast static RAM'S 
with a cycle time of 50 ns. Hence, the memory 
band-width is 160 Mbytels. 

As was seen above we need four intermediate image 
frames which amount to at  least 4 ~ 8 ~ 5 1 2 ~ 5 1 2 = 8 M b i t  
(more i f  we don't truncate some results). To  be on the 
safe side we assign 16Mbit=eight 8x256k SRAM's. The 
on-chip memory of just 256 kbit will then buffer lines 
rather than full images. The major cycle of the 
processing is to produce one or several new lines of 
intermediate and final results. 512 such major cycles 
produce one image. If the algorithm, a s  in our case 
requires four intermediate images and produces two 
output images (U, V) we have to d o  the following in 
each major cycle. See Figure 4. 

Image buffers (off-chip memory) v 
Line buffers (on-chip memory) 

Line buffers (shiftregisters) I * 
Ip-~ Processors I 

Figure 4 

Load one line from 11, 12, 13, I4 
Store one line to 11, 12, 13, I4 
Shift in one line from input image I. 
Shift out two lines to output images (U, V) 

Assume as  a worst case that we assign 16 bitlpixel 
to all images 11, 12, 13, 14. Then, the total data 
transport in one major cycle is 2 x 4 ~ 5 1 2 ~ 1 6  bit=8 kbyte 
and in one image cycle 4 Mbyte. Thus, the available 
bandwidth of 160 Mbytels maximizes the frame rate 
to 40 framesls. 

The "video" input and output images are assumed 
to consist of one bytelpixel. Therefore they contain 
256 kbyte each. One line of input data can possibly 
be shifted in at the same time as  one of the output 
data lines but we don't count on this. Thus, the total 
amount of data per frame to be shifted in or out is 

0.75 Mbyte, which limits the frame rate to 20 Mbytels 
I 0.75 Mbyte = 27 frameslsec. 

The architecture of the 512 processing elements is 
shown in Figure 5. All components are  arranged 
vertically around a single bit bus. The micro 
instruction has six fields, each one controlling the six 
following units in Figure 5. 

Shiftre 1 + 
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Figure 5 

Off-chip memory interface 
ArithmeticLogical Unit 
Shiftregister 1 110 connected 
Shiftregister 2 
Serial-parallel multiplier 
On-chip RAM 



The ALU is a bit-serial device which has been used 
also for the PASIC chip. It has a general purpose 
capability which has been demonstrated for various 
algorithms [5], [6]. In the present application we 
intend to use it mainly for addition, subtraction and 
division operations. Hence, we will only use the SUM 
output and carry feedback of ALU-functions. 
However, the ability to load the three input registers 
A, B, C with inverted inputs and the various logical 
function outputs makes it possible to generate 
practically all three-input Boolean functions [6]. 

It is easy to see that addition and subtraction require 
three cycles per bit. The two input bits can be fetched 
over the bus from any of the three sources, 
shiftregister 1, shiftregister 2 and RAM. The output 
bit can be stored at any of these places or the 
serial-parallel multiplier or the off-chip memory 
interface. An 8-bit addition producing a 9-bit result 
takes 25 clock cycles. 

Suppose we can match and interleave the 
110-operations transparent (or close to transparent) 
to the processing and that we on the average use 12 
bits per pixel. The 25-50 addlsub operations in the 
optical flow computation would then require a 
minimum of 

When using larger convolution kernels for the 
derivative estimation and larger smoothing kernels for 
the post-processing this number increases to 
approximately 

The bit-serial multiplier is described in some detail 
in Figure 6. One of the operands in the multiplication 
(ao, a , ,  ......, a7) is fixed to eight bit. This bit vector 
is loaded into eight latches in eight initial cycles. The 
arbitrarily long operand bo, bl ,....., b,-l is then 
serially. MSB first, furnished to the remaining input 
in every second clock interval. In every other second 
interval the output bit is gated to the bus and stored 
in registers or RAM. 

B U S  

The cascaded full adders perform addition up to 
the point when the sign bit bo arrives. This is known 
to the microprogram which then changes the function 
to subtraction via a special control signal. The 
multiplication of a signed 8-bit number with a signed 
n-bit number produces a signed 8+n-1 bit product and 
takes 

8 + n + 8 + n - 1 = 2n + 15 cycles 

Multiplication of two eight bit numbers then takes 
31 cycles. Multiplication with a longer operand than 
8 bit requires two separate multiplications followed by 
a separate addition process. Assuming truncation to 
a 16 bit result, a 16x16 bit multiplication then takes 

(8 + 16 + 8) + (8 + 16 + 16) + 3.16 = 120 cycles 

The six multiplications in the optical flow formulas 
using 16 bit precision then take at most 

The last step in the optical flow computation is the 
two divisions yielding the final result (U, V).Using the 
present bit-serial ALU in VIP a division takes 
approximately 8 n2 cycles producing an n bit quotient 
from an n bit divisor. With n=8 this step then requires 

By introducing a data controlled selector latch at 
the A-register input a division can be made in 3 n2 
cycles, which would reduce the cycle count for division 
with more than 60 %. 

Using the above numbers the total execution time 
is 

and 

respectively. 

Thus, provided with the 20 MHz clock rate the VIP 
should be able to sustain the following frame rates. 

Since the frame rates for maximum 110 
communication is higher, the total procedure i s  
processor bounded to these numbers. 

Figure 6 



CONCLUSIONS 

Optical flow can be computed in a straight-forward 
fashion using second derivatives. The VIP-chip (which 
exists in a laboratory version) seems to be capable of 
computing a 512x512 optical flow result 10-15 times 
per second depending on noise and precision 
requirements. The computation is processor bounded 
but the 110 communication and the memory bandwidth 
have been shown to be in good balance with available 
processing power. 
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