MVA’90

IAPR Workshop on Machine Vision Applications Nov. 28-30,1990, Tokyo

MAPPING AN N*N IMAGE ON P PROCESSORS

Erwin R. Komen, Wouter B. Teeuw, Robert PW. Duin and Pieter P. Jonker

Pattern Recognition Group,
Faculty of Applicd Physics,
Delft University of Technology,
Lorentzweg 1, 2628 CJ Delft, The Netherlands.

ABSTRACT

An cvaluation is made of hardware and software require-
ments 1o support window-, crinkle- and pyramid-mapping on a
lincar and a square processor array. The different mapping strat-
cgics also lcad 10 different algorithms to solve image processing
problems, Three image processing problems serve as an example
of the algorithmic differences caused by the mapping methods.
For the investigated 2D processor array, the pyramid mapping
gives the fastest resulls.

1 INTRODUCTION

Image processing tasks can be calculated by using a number
of Processing Elements (PEs) working in parallel. The question
arises how an image can most efficiently be mapped on available
PEs. In Scction 2 different mapping methods are discussed. Im-
plementation for the case of a CLIP4 processor array is described
in Section 3. In Section 4 the mapping methods are compared for
three image processing problems. The resulis of this comparison
are discussed in Section 5.

2 THE MAPPING PROBLEM
2.1 Mapping theory

Solutions 1o the problem of mapping an N*N image on P
processors may result in different architectures: ways in which
the P (PEs) are connected and cooperate.

Principally differing architectures are: the Linear Processor
Array, the Square Processor array, the PipeLine, and the PyRa-
mid (denoted as LPA, SPA, PL and PR respectively). Although
the mapping problem leads to different architectures, the same
PEs may be used (as argued in [6]). An LPA has P PEs config-
ured in a line. Every PE will be able to have immediate access to
3-5 values: one of the values in its own memory (three for the
AIS-5000; see [18]),0ne of its left, and one of its right ncighbour.

An SPA is an array of PEs connected in a 2D grid in which
cach processor has access to the output values of its ‘direct’
neighbours. Each PE contains its own local memory to store the
image pixel value corresponding 10 its position in the array. With
a full-array, the image is as large as the SPA. Due 1o the large
number of PEs nceded for increasing image sizes (up to
4096*4096 for satcllite images), this scems suited only for opti-
cal arrays such as the DOCIP [10]. Available arrays have sizes
from 8*8 1o 128*128,

The mapping types of image points on PEs that can be im-
plemented on an LPA and SPA arc the following:
< Full: For the LPA cach of the P PEs processes one column.
For the SPA cach of the J/P - JP PEs processes one pixel of the
image.

»  Crinkle-wise: For the LPA every PE is assigned 1o [N/P]
contiguous pixels of the row. The row is then processed in at least
[N/P7 processing steps. This method is, for example, used by
the PICAP3 [13]. For the SPA a sampled version of the image -
with as many pixels as there arc PEs - is mapped on the PEs of
the PA. This method is used by the GRID [14).

»  Window-wise: In an LPA (c.g. AIS-5000 [18]) the first P
pixels of a row are processed with the P PEs. then the next P pix-
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els etc. until the row is completely processed. This also takes at
least [ N/P7 processing steps. For an SPA(c.g. CLIP4 [5]) the
image is divided in windows (scans) of the SPA size.

=  Helicoidal: This mapping - only for LPAs - is similar to win-
dow-wise mapping, but differs in the assignment of image points
1o PEs, that shilt one point for every new row (sce Figure 1). This
mapping makes it possible to scan the array horizontally as well
as vertically across the image. Itis used in the SYMPATI-2 [11].
»  Pyramid: This is an extension of crinkle mapping - but only
for SPAs - in which images with less pixels than PEs are stored
in a subsct of neighbouring PEs. For example, a pyramid map-
ping on a 32*32 SPA has six levels containing arrays of sizes
1%1, 2#2, 4*4, 8*8, 16*16 and 32*32 stacked above cach other.
The base of the pyramid is a crinkle wise stored version of the en-
lirc image.

A processor mapping function (PMF) can be used to de-
scribe which image point is processed by which PE. For the LPA,
a PMF shows in which PE at position (x) the image point (i,j) is
stored. For the SPAs it shows in which PE at position (x,y) of the
SPA the image point (i,j) is stored. The PMFs for most of the list-
ed mapping methods are given in Table 1.

Table I Processor mapping functions

Name LPA: SPA:

Crinkle |x = i/LN/P] |(x,y) = (i/k, j’k)

Window |x = imod P (x,y) = (imod./?‘.jmodﬁ}
Helicoidal|x = (i+j)mod P

Full-size |[x =i (x,y) = (4,))

with: k = N/ (JJP), JP isan integer, and */" integer div.

To demonstrate the different PMFs for the LPA and SPA,
Figure 1 shows how an image of size 8*8 is stored in 4 PEs.

If an LPA uses crinkle or window mapping, this may involve
cxtra overhead: for crinkle-wise mapping the neighbour values
have to be obtained serially; for window-wisc mapping the PEs
which are on the array edge have to pass through their values
from scan 1o scan (this can be done without overhead, as shown
in the AIS-5000; [18]). LPAs which allow parallel or very fast
access to their neighbours will be more suited for window map-
ping e.g. SYMPATI-2 [11].

23] HANPERPEELR EEEEhREE
2]3]4 2/3]4 2121313144 3/4(1]213]4
2(314]1[2]3]4 212[3]3[4]4 3[d4[1{2]3]4[1]2
2[3]4]1]2[3]4 2|3]3]4]4 4]1]2]3 2[3
2[3]4]1]2]3]4 2]2]3]3]4]4 2[314]1j2/3]4
2[3]4 2]3]4 212[3]34]4 2(3[4]1]2[3]4]1
2]3[4]1]2[3]4 212131344 34]1]2]3[4]1]2
213]4]112]3]4 212{3]3]4]4 4[1]2]3{4]1[2]3

(a) (b) (c)

1 21112 — A2
31'%4% = B Eﬁ?ﬁ:}z
1201121112 & 2[2022
314]314]3]4]3] 4 kr 2:‘:22
2010 2[1]2]1]2 N RS D
314)3]4 [ 4 2 3] 3 4] 4] 4] 4
2011212 2 — 3333 a4l 4] 4
FEEDEDEE It FEEEDEE

) « ©

Figure 1 Mapping of an 8*8 image on 4 PEs: (a) LPA window-
wise, (b) LPA crinkle-wise, (c) LPA helicoidal, (d) SPA window-
wise and (¢) SPA crinkle-wise.



2.2 Window mapping

An SPA using window mapping divides the image in scans
with a size of VP*P (sce Figure 1d). Although every window
can be processed individually, hardware or - if there are no such
facilities - software should provide the values of the neighbours
which are across the window borders.

Several methods exist to solve this “edge-problem’ [2][8]. In
the experiments described in Section 3, the Edge Store Scanning
(ESS) method is used. With ESS, every window is processed
only after an edge around the PA is filled with the values of the
pixels which are neighbouring the window (see Figure 2). Not
many PAs arc equipped with edge hardware to do this [8].
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Figure 2 Edge store scanning.

The neighbourhood size used for window scanning opera-
tions willbe assumed - for convenience - not to be larger than the
neighbourhood size available from the Processor Array which is
used. There is scanning overhead of at lcast 2.5 to 4 duc to the
number of times a window is processed [12].

Window mapping is cspecially suited for SPAs which allow
parallel neighbour access e.g. CLIP4 [5], BASE [15], GAPP [4].

2.3 Crinkle wise mapping

An SPA using crinkle mapping stores sampled versions of
the image in the image memory. An example of crinkle mapping
is shown in Figure le. The sampled versions are created using
identical sampling frequencies. However, cach time the sampling
start positions differ.

In acrinkle wise stored image, ncighbours in the memory are
not neighbours in the image because sampled versions of the im-
age are stored in the memory (sce Figure 1c¢). Executing a neigh-
bourhood operation on a crinkle wise stored image can not be
done by using ncighbourhood connections in an SPA.

The overhead with regard to processing a crinkle wise stored
image depends on the number of neighbours that is used, because
neighbour values have to be gathered one by one.

If arrays are used which allow parallel neighbour access, this
facility is of hardly any use with crinkle mapping. Arrays which
are designed for serial neighbour access are more natural to this
mapping strategy e.g. MPP [1]. The GRID processor array is spe-
cifically designed for crinkle mapping [14).

2.4 Pyramid mapping

Pyramidal mapping is based on the pyramidal structure. A
processing clement in the interior of this pyramid has a local
neighbourhood which consists of a father in the level above,
eight neighbours at the same level, and four sons in the level be-
low. This is shown in Figure 3. The original image is in the base
of the pyramid. The other levels contain images derived from the
base. A pyramid supports multi-resolution image analysis [3].
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Figure 3 Typical pyramid architecture
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With pyramidal mapping, a pyramidal data structure is
mapped into the image memory of a small SPA. The upper levels
of the pyramid have dimensions which are smaller than or equal
to the dimensions of the SPA. Therefore they can be stored in
(the upper left part of) a single memory plane in image memory.
Processing them in the SPA is straight forward. The other levels
are stored crinkle wise in image memory, in such a way that a fa-
ther and his sons are stored in the memory of the same processing
element. This allows a more natural up- and downwards process-
ing in the pyramid. In the upper levels, shifts and masks have 1o
be used Lo process up- and downwards in the pyramid.

The images which have to be processed with a pyramid are
squarc in size. The dimensions have to be powers of two.

3 PROCESSOR MAPPINGS ON CLIP4

In this section we will describe how mapping methods can
be implemented on a specific SPA: the CLIP (Cellular Logic Im-
age Processor). This Processor Array was developed at the Uni-
versity College of London. For a full description of it we refer to
|5]. The Delft CLIP4 has 64*32 PEs, 2048 additional memory
planes, and does not posses hardware scanning facilitics.

3.1 Window mapping on the CLIP4

A software scanning version of ESS has been programmed
into the Dellt CLIP4 using C4VM (CLIP4 Virtual Machine: a
derivative of C; [7]). Programs which are written for the full-size
image, can be run on the CLIP4 using ESS afier recompilation,

While processing every window with the SPA, a special
software edge storage is created by or-ring the pixels which are
on the edges of the neighbouring windows (Figure 2a). These
edges have 1o be ransporied from one side of the array to the oth-
cr, This is done by a local neighbourhood operation followed by
a global propagation operation.

3.2 Crinkle mapping on the CLIP4

Images which are 128*128 or 256*256 pixcls in size have
been crinkle wise stored in the Delflt CLIP4 image memory. A
function has been implemented to process these images.

An image of 128*128 pixels in size, for example, is stored
in cight 64*32 memory planes. For reasons of symmetry, blocks
of 2*2 (instcad of 2*4) adjacent image pixels were stored in the
memory of the same processing element. Therefore, 8 sampled
versions of the image are actually stored (4 of the upper and 4 of
the lower half). In fact the image is divided into two parts which
arc both crinkle wise stored.

The function for processing these images solves the prob-
lems which are described in Section 1.3. However, special atten-
tion has 10 be given 1o the artificial edge in the middle of the im-
ages, which is a result of the fact that the Delft CLIP4 processor
array is nol square.

The authors measured a worst case overhead (the average
processing time per scan divided by the exccution time for a sin-
gle scan image) 1o be 28.8 (22.8) for processing a crinkle wise
stored image of 128*128 (256*256) pixels [17].

3.3 Pyramid mapping on the CLIP4

A pyramidal data structure was implemented in the image
memory of the Delft CLIP4 processor array. The pyramid con-
sists of nine levels, the top level being 1*1, the base level being
256*256 pixels in size. The levels 0 (= top) through 5 (= 32%32
pixels) are stored in the upper left part of a 64 by 32 Delfi CLIP4
memory plane. Level 6 (= 64*64 pixels) is stored window wise
in two memory planes. The levels 7 (= 128%128 pixels) and 8 (=
base) are stored crinkle wise. All the pixels of level 7, having the
same father in level 6 are stored in the memory of the same PE.
In total, level 7 occupies cight memory planes. The first four of
these planes contain successively the upper left, upper right, low-
er left, and lower right sons of the pixels in the upper half of the
image at level 6 of the pyramid. The last four planes of level 7
contain the sons of the pixels in the lower half of the level 6 im-
age. The same relation as the one that exists between the levels 6



and 7 of the pyramid, holds for the levels 7 and 8 of the pyramid.
The image of level 8 is stored in thirty-two memory planes. The
pixels in the first four memory planes of level 8 represent the four
sons of the pixels in the first memory plane in which level 7 is
stored, and so on.

To store a binary pyramid in the Delft CLIP4's image mem-
ory, forty-cight memory planes are used. To store a grey value
pyramid, cight times as many memory planes are needed.

4 ALGORITHMS

4.1 Edge detection in noisy binary images

The problem of detecting an edge in a noisy binary image is
illustrated in Figure 4. Given the binary image as shown in Figure
4a, the original contour of the hand has to be recovered. The re-
sult of the algorithms is shown in Figure 4b.

Figure 4 Edge detection in noisy binary image: (a) original
256*256 image, (b) result image.

The window and crinkle mapping version is as follows.

make three copies of the image

edge detection in the first copy

erosion, dilation, edge detection, and a dilation in the second
dilation, erosion, edge detection, and a dilation in the third
result is the logical AND of the three obtained images

The edge detection algorithm using pyramid mapping is as
below [9]. Note that in this algorithm, the function cleanf...) re-
moves Lthe noise pixels which is in- or outside the object (see Fig-
urc 4).

put image in base of pyramid-1

clean (pyramid-1)

put negation of image in base of pyramid-2

clean (pyramid-2)

dilate base of pyramid-2

result is the AND of the images in the bases of both pyramids

The pseudo code for the cleany...) subroutine is given below.
For the results which appear in Table 2, the variable higherlevel
was chosen equal to the number of the level which is just above
the base. Changing higherlevel alters the size of the noise that is
removed. The base of the pyramid has the highest number, the
top (= level 0) has the lowest number.

for level = base-1 to higherlevel do
pixels get value which is the AND of their four sons

od
edge detection in base and in higherlevel, result is saved
dilation higherlevel
Jor level = higherlevel+1 (o base do
pixels get value which is equal to their father value

erosion base image
logical AND of the base image with the saved edges

4.2 Finding the maximum grey value in an image

The problem of finding the maximum grey value in an image
is illustrated in Figure 5. Given the grey value image as shown in
Figure 5a, a binary image has to be constructed showing the po-
sitions of the image points with maximum grey value. The result
of our algorithm is shown in Figure 5b.
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(b)

Figure 5 Max grey value example: (a) original 256*256*8 bit
image, (b) result image with positions of max greyvalue.
An algorithm suited for a window or crinkle mapped image
is described below. After execution, maxirmum contains the max-
imum grey value and the result-image shows its position.

all pixels in the result-image are set to one (1)
maximum =0

factor = 2-}
stop = false
JSor all bitplanes of source image do
most significant bitplane of source (not yet treated) is|
ANDed with result and result is put into help-image |
count = number of pixels set in the help image
if count != 0 then
result-image = help-image
maximum = maximum + factor
fi
factor = factor / 2
od

The pyramid mapping version is as follows.

for level = base-1 to 10p do
pixels get value which is maximum of their four sons

maximum = value in the top of the pyramid
Jor level = wp+1 to base do
pixels get value which is equal to their father value

EXOR all bitplanes of base with bitplanes of original image
invert all bitplanes base
result-image = logical AND of all the bitplanes in the base

In both algorithms, a test image completely filled with the
maximum possible 8-bit number has been used.

4.3 Counting the fingers on a hand

An image of a hand has to be processed in such a way, that
the fingers of the hand become separate objects. These are then
to be counted. Given the binary image as shown in Figure 6a, the
resulting finger images are shown in Figure 6b.
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Figure 6 Counting the fingers: (a) original 256*256 image, (b)
resulting fingers to be counted.

The window or crinkle mapping version:

erode the image 15 times [using all 9 points in a 3*3 nbhood )
dilate the image 16 times [ same structuring element)
negation image

and image with the original image [now only fingers are left)
count the number of objects in the image




The pyramid mapping version is as follows [16].

Jfor level = base-1 1o top do
pixels get value which is the AND of their four sons

find upperlevel of pyramid, which is not empty and which is as
near 1o the top of the pyramid as possible
dilate upperlevel
Jfor level = upperlevel+1 o base do
pixels get value which is equal 10 their father value
od
negation of the base image
AND base image with original image (only fingers are left)
count the number of objects in the image

5 DISCUSSION OF RESULTS

The times which were measured on the Delft CLIP4 are giv-
cn in Table 2. All timings were done with a minimum of system
overhead, while performing the algorithm ten times (and divid-
ing the result by ten).

Table 2 Performance of mapping methods on Delft
CLIP4 (all times in ms.)
Mapping edge Max grey | count
method: detection: | value: fingers:
edge store scanning | 438 55 1602
crinkle mapping | 553 52 2165
pyramid mapping | 423 3080 (52) | 597

For the edge detection and the finger count algorithms, ESS
is about 20% faster than crinkle mapping because ESS handles
local neighbourhood operations more efficiently. The algorithm
for the determination of the maximum grey value shows a differ-
ence between ESS and crinkle mapping caused by a slightly
smaller overhead for ESS.

The maximum grey value algorithm performs very poorly
for the pyramid mapping because multi-bit values are compared
on the 1 bit PEs. Also, the simulation of a pyramid on the Delft
CLIP4 has many layers (near the top) in the pyramid stored in a
window-wise manner. Processing them up- and downwards
causes a lot of overhead. As the pyramid mapping encompasses
the crinkle-wise mapping, it is better to perform the window ori-
ented algorithm in the base of the simulated pyramid (indicated
by the value between brackets in Table 2).

With the pyramid edge detection algorithm, only the crinkle-
wise stored layers of the pyramid are used. Openings and clos-
ings of a binary image in the window oriented algorithm are re-
placed by up and down processing in the pyramid algorithm,
Therefore, the timings of the different algorithms are compara-
ble.

The finger count algorithms fall into two parts: the isolation
of the fingers, and the actual counting of them. The actual count-
ing of the fingers takes the same amount of time for all three map-
ping strategies. The finger isolation is done using crosions and
dilations for the window oriented algorithm, while using up-
wards ANDing and passing values through downwards for pyra-
mid mapping. The latter involves less scans due to the smaller
sizes of the pyramid levels.

As the algorithms for pyramid and window oriented map-
pings differ, the qualitative results can be different. The window
oriented finger counting algorithm uses the prior knowledge of
the size of the hand, whereas the pyramid-oriented algorithm is
completely handsize independent. The pyramid oricnted edge
detection algorithm is a little bit sensitive to small shifis of the
image, whereas the window oriented algorithm is not.

6 CONCLUSIONS

«  Window mapping: I a processor array can access its neigh-
bours in parallel and if scanning hardware is available, then one
of the described window mapping techniques may be more
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suited.

= Crinkle mapping is good for operations which do not use
many neighbourhood connections, e.g. in case of point opera-
tions (maximum grey value algorithm).

= Pyramid mapping is advantageous if the higher pyramid lev-
els can be used for more global operations or operations that can
be performed on sampled versions of the image (e.g. many ero-
sions or thresholding a blurred image). Pyramid mapping is dis-
advantageous for comparing grey values in the top of the simu-
lated pyramid. However, as pyramid mapping encompasses crin-
kle mapping, the crinkle algorithms can also be used in the base
of the pyramid without reorganising the data.

»  Algorithms: Dilferent mapping strategies led to different ap-
proaches 1o solve image processing problems. If, for example,
shrinking or cxpanding is used with window mapping, up- and
downwards processing can be used in pyramidal mapping.
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