
MVA'SO IAPR Workshop on Machine Vision Applications Nov. 28-30,1990, Tokyo

MAPPING AN N*N IMAGE ON P PROCESSORS

Erwin R. Komen, Wouter B. Teeuw, Robert P.W. Duin and Piefer P. Jonker

Pattcm Recognition Group,
Faculty of Applicd Physics,

Delft University of Technology,
Lorentzwcg 1.2628 CI Dclft. The Ncthcrlands.

ABSTRACT
An cvaluation is made of hardware and software rcquirc-

mcnts to support window-, crinkle- and pyramid-mapping on a
lincar and a squarc proccssor array. The diffcrcnt mapping strat-
cgics also lcad to diffcrcnt algorithms to solvc imagc proccssing
problcms. Thrcc imagc proccssing problems servc as an cxarnplc
of thc algorithmic diffcrcnccs causcd by the mapping mcthods.
For thc invcstigatcd 2D proccssor array, thc pyramid mapping
givcs thc fastcst rcsults.

1 INTRODUCTION
lmagc proccssing tasks can bc calculated by using a number

of Processing Elcmcnts (PEs) working in parallcl. Thc question
ariscs how an irnagc can most cfficicntly bc mappcd on available
PEs. In Scction 2 diffcrcnt mapping mcthods arc discusscd. Im-
plcmcntation for the case of a CLIP4 proccssor array is described
in Scction 3. In Scction 4 the mapping n~cthods arc comparcd for
thrcc imagc proccssing problcms. Thc results of this comparison
arc discusscd in Scction 5.

2 THE MAPPING PROBLEM
2.1 Mapping theory

Solutions to the problem of mapping an N*N image on P
processors may result in different architectures: ways in which
the P (PEs) are connectcd and cooperate.

Principally differing architectures are: the Linear Processor
Array, the Square Proccssor array, the PipeLine, and the PyRa-
mid (denoted as LPA, SPA, PL and PR rcspectivcly). Although
the mapping problem leads to different architectures, the same
PEs may be used (as argued in [61). An LPA has P PEs config-
ured in a line. Evcry PE will be able to have immediate access to
3-5 valucs: onc of the valucs in its own mcmory (thrce for thc
AIS-5000; see [18]),one of its left, andone of its right ncighbour.

An SPA is an array of PEs connccted in a 2D grid in which
each proccssor has acccss to the output valucs of its 'direct'
ncighbours. Each PE contains its own local memory to store the
irnagc pixcl value corresponding to its position in the array. With
a full-array, thc image is as large as the SPA. Due to the large
number of PEs needed for increasing imagc sizcs (up to
4096*4096 for satellite images), this seems suited only for opti-
cal arrays such as the DOCIP [lo]. Available arrays havc sizes
from 8*8 to 128*128.

The mapping types of imagc points on PEs that can be im-
plemented on an LPA and SPA arc the following:

Full: For the LPA each of the P PEs processes one column.
For the SPA cach of the 2/7;. 2/7; PEs proccsscs one pixel of the
image.

Crinkle-wke: For the LPA every PE is assigned to r N / P 1
contiguous pixcls of the row. The row is thcn proccsscd in at least
r N / P l proccssing stcps. This method is, for example, uscd by
the PICAP3 1131. For the SPA a sampled vcrsion of the image -
with as many pixels as there arc PEs - is mapped on the PEs of
the PA. This method is uscd by the GRID [14].

Window-wise: In an LPA (e.g. AIS-5000 [I@) the first P
pixels of a row are proccsscd with the P PEs, thcn the ncxt P pix-

els etc. until the row is complctcly proccsscd. This also takes at
least r N / P l proccssing stcps. For an SPA(c.g. CLIP4 (51) thc
imagc is dividcd in windows (scans) of the SPA sizc.

Helicoi'dal: This mapping -only for LPAs - is similar to win-
dow-wisc mapping, but differs in thc assignmenl of imagc points
to PEs, that shift one point for every ncw row (scc Figurc 1). This
mapping makcs it possiblc to scan thc array horizontally as wcll
as vertically across thc imagc. It is uscd in the SYMPATI-2 [I 1 j.

Pyramid: This is an cxtcnsion ofcrinklc mapping - but only
for SPAs - in which images with lcss pixels than PEs arc storcd
in a subsct of ncighbouring PEs. For example, a pyramid map-
ping on a 32*32 SPA has six lcvcls containing arrays of sizcs
1*1,2*2,4*4,8*8,16*16 and 32*32 stackcd above cach othcr.
The base of thc pyramid is a crinkle wise stored version of the cn-
rirc image.

A processor mapping function (PMF) can be uscd to dc-
scribe which image point is proccsscd by which PE. For the LPA,
a PMF shows in which PE at position (x) thc imagc point (i j) is
storcd. For the SPAs it shows in which PE at position (xy) of the
SPA the imagc point (i j) is storcd. The PMFs for most of the list-
cd mapping methods arc givcn in Table 1.

To demonstrate the diffcrcnt PMFs for the LPA and SPA,
Figure 1 shows how an imagc of sizc 8'8 is storcd in 4 PEs.

Table I Processor mapping functions

If an LPA uses crinkle or window mapping, this may involve
extra overhcad: for crinklc-wisc mapping thc ncighbour valucs
have to be obtained scrially; for window-wisc mapping the PEs
which are on the array edge havc to pass through thcir valucs
from scan to scan (this can bc done without overhcad, as shown
in the AIS-5000; [Ill]). LPAs which allow parallcl or vcry fast
access to their ncighbours will be more suitcd for window map-
ping e.g. SYMPATI-2 [l I].

Name

Crinkle
Window
Helico'idal
Full-size

Figure 1 Mapping of an 8*8 image on 4 PEs: (a) LPA window-
wise, (b) LPA crinkle-wise, (c) LPA helicoi'dal, (d) SPA window-

wise and (e) SPA crinkle-wise.

with: k = N / (3) , 2/7; is an intcgcr, and '/' intcgcr div.

LPA:

x = i / L N / P J
x = imod P
x = (i + j) mod P
x = i

SPA:

(x, y) = (i / k , j / k)
(x, y) = (imod 2/7;, jmod fi)

(x, Y) =

2.2 Window mapping
An SPA using window mapping divides the image in scans

with a sizc of (see Figurc Id). Although evcry window
can bc proccssed individually, hardware or - if there are no such
facilities - softwarc should provide the values of the ncighbours
which arc across thc window borders.

Several methods exist to solve this 'cdg-problem' [2][8]. In
thc cxpcrimcnts dcscribcd in Scction 3, the Edge Store Scanning
(ESS) mcthod is used. With ESS, evcry window is processed
only aficr an cdgc around thc PA is fillcd with the values of the
pixcls which arc ncighbouring thc window (scc Figure 2). Not
many PAS arc cquippcd with cdgc hardwarc to do this [8].

Figure 2 Edge store scanning.

Thc ncighbourhood sizc uscd for window scanning opcra-
tions willbc assumcd - for convcnicncc - not to bc larger than thc
ncighbourhood sizc available from thc Proccssor Array which is
uscd. Thcrc is scanning ovcrhcad of at lcast 2.5 to 4 duc to thc
numbcr of timcs a window is proccsscd [12].

Window mapping is cspccially suitcd for SPAS which allow
parallcl ncighbour acccss c.g. CLIP4 151, BASE 1151, GAPP [4].

2.3 Crinkle wise mapping
An SPA using crinklc mapping storcs samplcd vcrsions of

thc imagc in thc i m a g mcmory. An cxamplc of crinklc mapping
is shown in Figurc le. Thc sampled vcrsions are crcatcd using
identical sampling frequcncics. However, cach time thc sampling
start positions diffcr.

In a crinkle wise stored image, neighbours in the mcmory arc
not neighbours in the image because samplcd vcrsions of the im-
age arc storcd in the mcmory (see Figurc lc). Exccuting a ncigh-
bourhood operation on a crinklc wisc storcd irnagc can not be
donc by using ncighbourhood connections in an SPA.

The ovcrhcad with regard to processing a crinklc wisc storcd
imagc dcpcnds on the number of neighbows that is uscd, bccausc
neighbour values have to bc gathered one by one.

If arrays are used which allow parallcl neighbour acccss, this
facility is of hardly any usc with crinklc mapping. Arrays which
are dcsigncd for serial ncighbow ncccss arc morc natural to this
mapping strategy c.g. MPP [I]. The GRID proccssor array is spc-
cifically designed for crinkle mapping [14].

2.4 Pyramid mapping
Pyramidal mapping is bascd on the pyramidal structurc. A

processing clemcnt in the intcrior of this pyramid has a local
ncighbourhood which consists of a father in the level above,
cight ncighbours at the same level, and four sons in the level be-
low. This is shown in Figure 3. The original imagc is in the base
of thc pyramid. The other levels contain imagcs derived from the
basc. A pyramid supports multi-resolution imagc analysis 131.

Figure 3 Typicalpyramid architecture

With pyramidal mapping, a pyramidal data structure is
mapped into thc imagc memory of a small SPA. The uppcr levels
of the pyramid havc dimensions which arc smaller than or equal
to the dimensions of the SPA. Thcrcforc they can bc stored in
(the uppcr lcft part of) a single mcmory plane in imagc memory.
Processing thcm in thc SPA is straight forward. The other levels
arc stored crinklc wisc in image memory, in such a way that a fa-
thcr and his sons are stored in the mcmory of the samc processing
clcmcnt. This allows a morc natural up- and downwards proccss-
ing in the pyramid. In the upper lcvcls, shifts and masks havc to
be used to proccss up- and downwards in the pyramid.

Thc imagcs which have to bc proccsscd with a pyramid arc
square in sizc. The dimensions havc to be powers of two.

3 PROCESSOR MAPPINGS ON CLIP4
In this scction wc will dcscribc how mapping mcthods can

bc implcmcntcd on a spccific SPA: ~ h c CLIP (Ccllular Logic Im-
age Proccssor). This Proccssor Array was dcvclopcd at thc Uni-
vcrsity Collcgc of London. For a full description of it we rcfcr to
151. Thc Dclft CLIP4 has 64*32 PEs, 2048 additional mcmory
plancs, and does not posses hardwarc scanning facilitics.

3.1 Window mapping on the CLIP4
A softwarc scanning vcrsion of ESS has bccn programmed

into thc Dcln CLIP4 using C4VM (CLIP4 Virtual Machinc: a
dcrivativc of C; [7]). Programs which arc writtcn for thc full-sizc
imagc, can bc run on thc CLIP4 using ESS aftcr rccompilation.

Whilc proccssing cvcry window with the SPA, a spccial
softwarc cdgc storagc is crcatcd by or-ring the pixcls which arc
on the edgcs of the ncighbouring windows (Fiyrc 2a). Thcsc
cdgcs havc to bc transported from onc sidc of thc array to the oth-
cr. This is donc by a local ncighbourhood opcration followed by
a global propagation opcration.

3.2 Crinkle mapping on the CLIP4
lmagcs which arc 128*128 or 256*256 pixcls in sizc havc

becn crinklc wisc storcd in the Dclft CLIP4 imagc mcmory. A
function has bccn implcmcntcd to process thcsc imagcs.

An imagc of 128*128 pixcls in sizc, for cxamplc, is storcd
in cight 64*32 mcrnory plancs. For rcasons of symmctry, blocks
of 2*2 (instead of 2*4) adjaccnt image pixcls wcrc storcd in thc
mcmory of thc samc processing element. Thcrcforc, 8 samplcd
vcrsions of the imagc arc actually storcd (4 of the upper and 4 of
thc lower half). In fact the imagc is dividcd into two parts which
arc both crinkle wisc stored.

Thc function for proccssing thcse imagcs solves thc prob-
lems which arc dcscribcd in Scction 1.3. However, special attcn-
tion has to be given to thc artificial cdge in thc middle of thc im-
ages, which is a rcsult of the fact that the Dclft CLIP4 proccssor
array is not square.

The authors measured a worst case ovcrhcad (the avcragc
proccssing timc pcr scan dividcd by the exccution timc for a sin-
glc scan imagc) to bc 28.8 (22.8) for proccssing a crinklc wisc
stored imagc of 128*128 (256*256) pixels (171.

3.3 Pyramid mapping on the CLIP4
A pyramidal data structurc was implcmcntcd in thc imagc

mcmory of the Dclft CLIP4 proccssor array. Thc pyramid con-
sists of nine levels, the top lcvcl bcing 1*1, thc basc lcvcl bcing
256*256 pixels in sizc. The levels 0 (= top) through 5 (= 32*32
pixels) are storcd in the upper left part of a 64 by 32 Delk CLIP4
mcmory plane. Level 6 (= 64*64 pixcls) is storcd window wisc
in two memory plancs. The lcvels 7 (= 128*128 pixcls) and 8 (=
basc) are storcd crinklc wisc. All the pixcls of levcl7, having thc
same father in level 6 are storcd in the memory of the samc PE.
In total, level 7 occupies cight mcmory plancs. The first four of
thcsc plancs contain successively the uppcr lcft, upper right, low-
er left, and lower right sons of the pixcls in the uppcr half of the
image at level 6 of the pyramid. The last four plancs of lcvcl 7
contain the sons of thc pixels in thc lower half of the lcvcl 6 im-
age. The same rclation as the one that exists betwcen thc lcvcls 6

and 7 of the pyramid, holds for the levels 7 and 8 of the pyramid.
The imagc of level 8 is stored in thirty-two memory planes. The
pixels in the first four memory planesof level 8 represcnt the four
sons of the pixels in the first memory plane in which level 7 is
stored, and so on.

To store a binary pyramid in the Delft CLIP4's image mem-
ory, forty-eight memory planes are used. To store a grey value
pyramid, eight times as many memory planes are needed.

4 ALGORITHMS
4.1 Edge detection in noisy binary images

The problem of detecting an edge in a noisy binary image is
illustrated in Figure 4. Given the binary image as shown in Figure
4a. the original contour of the hand has to be recovered. The re-
sult of the algorithms is shown in Figure 4b.

f'lxurc 4 Ed~cl d1'1c.c.lion in noisy binary image: (a) original
256*256 image, (b) result image.

The window and crinkle mapping version is as follows.

make three copies of the image
edge detection in the first copy
erosion, dilation, edge detection, and a dilation in the second
dilation, erosion. edge detection, and a dilation in the third
result is the logical AND of the three obtained images

I I
The edge detection algorithm using pyramid mapping is a9

below [9]. Note that in this algorithm, the function clea n(...) re-
moves the noise pixels which is in- or outside the object (see Fig-
ure 4).

clean (pyramid-I)
put negation of image in base of pyramid-2
clean (pyramid-2)
dilate base of pyramid-2
result is the AND of the images in the bases of both pyramids

The pseudo code for the clea n(...) subroutine is given below.
For the results which appear in Table 2, the variable higherlevel
was chosen equal to the number of the level which is just above
the base. Changing higherlevel alters the size of the noise that is
removed. The base of the pyramid has the highest number, the
top (= level 0) has the lowest number.

for level = base-l lo higherlevel do
pixels get value which is the AND of their four sons

od
edge detection in base and in higherlevel, result is saved
dilation higherlevel
for level = higherlevel+l lo base do

pixels get value which is equal to their father value
od
erosion base image
logical AND of the base image with the saved edges

Figure 5 Mtx grey v(1111(' ~xumple: (a) original 256*256*8 bit
image, (h) result image with positions of ma* greyvalue.

An algorithm suited for a window or crinkle mapped image
is described below. After execution, maximum contains the max-
imum grey value and the result-image shows its position.

all pixels in the result-image are set to one (1)
maximum = 0

factor = 2 7

stop = false
for all bitplanes of source image do

most signiiicant bitplane of source (not yet ueated) is
ANDed with result and result is put into help-image

count = number of pixels set in the help image
$count != 0 then

result-image = help-image
maximum =maximum +factor

fi
factor = factor / 2

od

The pyramid mapping version is as follows.

for level = base-1 to top do
pixels get value which is maximum of their four sons

od
maximum = value in the top of the pyramid
for level = top+l to base do

pixels get value which is equal to their fathcr valuc
od
EXOR all bitplanes of base with bitplanes of original image
invert all bitplanes base
result-image = logical AND of all the bitplanes in the base

In both algorithms, a test image completely filled with the
maximum possible 8-bit number has been used.

4.3 Counting the fingers on a hand
An image of a hand has to be processed in such a wav, that

the fingers i f the hand become separate objects. These arc then
to be counted. Given the binary image as shown in Figure 6a, the
resulting finger images are shown in Figure 6b.

Figure 6 Courrting rhefirr~ers: (a) original 256*256 image, (b)
resulting fingers to be counted.

4.2 Finding the maximum grey value in an image The window or crinkle mapping version:

The problem of finding the maximum grey value in an image
is illustrated in Figure 5. Given the grey value image as shown in dilate the image 16 times (same structuring element)
Figure 5a, a binary image has to be constructed showing the po- negation image

sitions of the image points with maximum grey value. The result and image with the original image (now only fingers are left)
count the number of objects in the image

of our algorithm is shown in Figure 5b.

The pyramid mapping vcrsion is as follows [16].

for level = basc-l to top do
pixels get value which is the AND of their four sons

od
find upperlevel of pyramid, which is not empty and which is

near to the top of the pyramid as possible
dilate upperlevel
for level = upperlevel+l lo base do

pixels get value which is equal to their father value
od
negation of the base imagc
AND base image with original image (only fingers are left]
count the numhcr of objects in the image

5 DISCUSSION OF RESULTS
Thc timcs which were mcasured on the Delft CLIP4 are giv-

en in Tablc 2. All timings were done with a minimum of systcm
ovcrhcad, whilc pcrforming thc algorithm ten timcs (and divid-
ing thc result by ten).

For the edge dctcction and the fingcr count algorithms, ESS
is about 20% faster than crinkle mapping bccause ESS handles
local ncighbourhood operations more efficiently. The algorithm
for the determination of the maximum grey value shows a differ-
cncc between ESS and crinkle mapping caused by a slightly
smallcr overhead for ESS.

The maximum grey value algorithm performs very poorly
for the pyramid mapping because multi-bit values are compared
on the 1 bit PEs. Also, the simulation of a pyramid on the Delft
CLIP4 has many layers (near the top) in the pyramid stored in a
window-wise manner. Processing them up- and downwards
causes a lot of overhead. As the pyramid mapping encompasses
thc crinkle-wix mapping, it is better to perform the window ori-
ented algorithm in the base of the simulated pyramid (indicated
by the value betwecn brackets in Table 2).

With the pyramid edge dctection algorithm, only the crinkle-
wise stored layers of the pyramid are used. Openings and clos-
ings of a binary image in the window oriented algorithm arc re-
placed by up and down processing in the pyramid algorithm.
Therefore, the timings of the different algorithms are compara-
ble.

The finger count algorithms fall into two parts: the isolation
of the fingers, and the actual counting of them. The actual count-
ing of the fingers takes the same amount of time for all three map-
ping strategies. The finger isolation is done using erosions and
dilations for the window oriented algorithm, whilc using up-
wards ANDing and passing values through downwards for pyra-
mid mapping. The latter involves lcss scans due to the smallcr
sizes of the pyramid levels.

As the algorithms for pyramid and window oriented map-
pings differ, the qualitative results can be different. The window
oriented finger counting algorithm uses the prior knowledge of
the size of the hand, whereas the pyramid-oriented algorithm is
completely handsize independent. The pyramid oriented cdge
detection algorithm is a little bit sensitive to small shifts of the
image, whereas the window oriented algorithm is not.

Table 2 Performance of mapping methods on Delfr
CLIP4 (all rimes in m .)

6 CONCLUSIONS

Mapping
method:

edge store scanning
crinkle mapping
pyramid mapping

Window mapping: If a processor array can access its neigh-
bours in parallel and if scanning hardware is available, then one
of the described window mapping techniques may be more

suited.
Crinkle mapping is good for operations which do not use

many neighbourhood connections, c.g. in case of point opera-
tions (maximum grey value algorithm).

Pyramid mapping is advantageous if the higher pyramid lev-
els can be used for more global operations or operations that can
be performed on sampled versions of the image (e.g. many ero-
sions or thresholding a blurrcd image). Pyramid mapping is dis-
advantageous for comparing grey values in the top of the simu-
lated pyramid. However, as pyramid mapping encompasses crin-
kle mapping, the crinkle algorithms can also be used in the base
of the pyramid without reorganising the data.

Algorithm: Different mapping strategies led to different ap-
proachcs to solve image processing problems. If. for example,
shrinking or cxpanding is used with window mapping, up- and
downwards processing can be used in pyramidal mapping.

edge
detection:

438
553
423

7 ACKNOWLEDGEMENTS
This work was supported by the Foundation for Computer

Scicncc in the Nclhcrlands SlON with financial support from the
Ncthcrlands organisation for Scientific Rexarch (NWO) and the
SPIN projcct Three Dimensional Image Analysis.

Maxgrey
value:

55
52
3080 (52)

8 REFERENCES
count
fingers:

1602
2165
597

[I] Batcher KE (1980) Design of a massively parallel processor. IEEE
Transactions on Computers C-29836-840

[2] Buurman J, Duin RPW (1988) Implementation and use of software
scanning on a small CLIP4 processor array. In: Kittler J (4) h-
ture notes in computer science 301: Pattern Recognition, Springer-
Verlag, London, pp269-277.

[3] Cantoni V, Levialdi S (1986) Pyramidal systems for computer vi-
sion. Springer-Verlag. Berlin Heidelberg.

[4] Davis R. Thomas D (Oct.1984) Systolic array chip matches the
pace of high speed processing. Elecuonic design:207-218

151 Duff MJB (1982) The CLIP4. In: FII KS. Ichikawa T (eds) Special
computer architectures for Pattern Recognition. CRC-Press. pp 65-
86.

[6] Duin RPW, Jonker PP (1986) Processor arrays versus pipelines for
cellular logic image operations. In: Young IT (eds)EUSIPCO II-
1:Theories and Applications, Elscvier Science, pp1339-1342

[7] Fedorec AM. Otto GP (1988) The CLIP4 vinual machine refcr-
ence. Report No. 8811. Image processing Group. University Col-
lege London.

[8] Fountain TJ, Postranecky M. Shaw GK (1987) The CLlP4S sys-
tem. Pattem recognition letters 5:71-79.

191 Gangolli AR, Tanimoto SL (1983) Two pyramid algorithms for
edge detection in noisy binary images. Information processing let-
ters 17:197-202

[lo] Huang KS, Jenkins RK, Sawchuk AA (1989) Binary imagc algebra
and optical cellular logic proc. design. CVGIP 45(3):295-3A5

[I l l Juvin D. Basilie JL, Essafi H, Latil JY (1988) Sympati 2. a 1.5D
processor array for image application. In: EUSIPCO IV: Theories
and applications, Nonh-Holland. pp.311-314

[I21 Komen ER (1990) Low-level image processing architectures com-
pared for some non-linear recursive neighbourhood operations.
Thesis. Delft Univ. of Techn.. Pattem Recognition Group.

[I31 Lindskog B (1988) PICAP3. An SlMD architecture for multi-di-
mensional signal processing: Dissenation No.176. Dept. of El.
Eng. Linkoping University, Sweden.

[14] Pass S (1985) The GRID parallel computer system. In: Kittler J,
Duff MJB (eds) Image processing system architcctures. Research
Studies Press Ltd.. Letchwonh, pp 23-35.

[15] Reeves AP (Jan 1984) Parallel computer architectures for image
processing. CVGIP 25:68-88

[I61 Schaefer DH, Ho P, Boyd J. Vallejos C (1987) The GAM pyramid.
In: Uhr L (ed.) Parallel computer vision. Academic Press. New
York. pp. 15-42

[I71 Teeuw WB (1989) Pyramid based image processing on a CLIP4
processor array. D-2 report. Pattern recognihon Group. Faculty of
Applied Physics. Delft University of Technology.

[I81 Wilson SS (1988) One dimensional SlMD architectures - the AIS-
5000. Multicomputer Vision, Academic Press. pp13 1-149

