
MVA'gO IAPR Workshop on Machine Vision Applications Nov. 28-30.1990, Tokyo

ASSOCIATIVE CONTOUR PROCESSING

Avidan J. Akerib and Smil Ruhman

Department of Applied Mathematics & Computer Science

Weizmann Institute of Science

Rehovot 76100 Israel

ABSTRACT INSTRUCTION SET
Associative algorithms are presented that can ac- The machine model is shown on Fig. 1, where the

complish curve propagation with thresholding in 1.5 ps of memory words is = Nz, image size is
per iteration, ideal thinning in 6.4 ps per iteration taken to be N N. ~h~ primitive associative opera-
and contour tracing and labeling in 66 ps per itera- tions are given below.
tion, while operating on a 512 x 512 image. This per-
formance is achieved in a novel architecture designated Vj = 0,1,2,.. . , J - 1 and Vk = 0,1 ,2 , - . . , K - 1
ARTVM (Associative Real Time Vision Machine) with
a modest hardware complement of 64 associative mem- COMPARE: Tj +- TjUkMk(Ajk @ Ck)
ory chips (and a microprogrammed controller). rsp t ujTj

INTRODUCTION

The classical approach to associative processing, as
described by Foster [I], uses a few primitives to imple-
ment all arithmetic and logic functions. These func-
tions operate on all bits of all words of associative mem-
ory a t the same time. Hence such a system may be
regarded as an array of simple processors, one for each
word in memory. Ruhman & Scherson (RkS) [2,3,4]
introduced shift operations in the responder (tag) reg-
ister to provide communication between processors, de-
fined the primitive operations by logic equations, and
adapted associative memory for modular VLSI imple-
mentation. Extending this approach to image process-
ing led to the architecture used in this paper, which
is designated ARTVM - Associative Real Time Vi-
sion Machine. In order to perform complex algorithms
on 2-d images in real time a t video rate, a word or
simple processor was assigned to each pixel in the im-
age. Many of the algorithms operate on a neighbor-
hood around each pixel, thereby imposing heavier de-
mands on inter-process communication. The addition
of a long shift that is a sub-multiple of the image di-
mensions, satisfies this requirement. Implementation
is based on a 4K word x 152 bit associative memory
chip which makes up the bulk of the hardware. To
handle a 512 x 512 pixel image the machine requires
64 such VLSI chips. Application of ARTVM to edge-
detection and stereo-vision will appear elsewhere - the
contour processing algorithms treated here represent
an attempt to extend the work to mid-level vision func-
tions, starting from the primitive curve propagation in-
volved in dual thresholding of edge points, continuing
with thinning, and ending with curve tracing, labeling
and counting.

WRITE:
READ: Oj 4- ukAjkTj
SETAG: Tj + 1
SHIFTAG(f 1): Tjtl +- Tj
SHIFTAG(f b): Tjfb 4- Ti (long shift)
COUNTAG: S + C ,Tj

FIRSEL:
1 if j is the first ONE in T
0 otherwise

Let X denote any one of t h e following:
M (Mask), C (Cornparand), MC (Mask d Cornparand)
SETX: Xk + 1
LETX opt1 opt2 opt3
Where: optl = d(rl), d(rz), . . . , d(ra)

opt2 = dseq(ul, uz)
opt3 = dvar (vl, vz, p)

and options can be intermingled in any order. Then:
1 Vk = r l , r2,r3,- .- ,ra if opt1

~ t - v , Vk [vl,vz] if opt3
0 else

where pi denotes the i-th bit of integer p.

The symbols H,@ and u stand for or, ezclusive-or
and or-expansion, respectively. Up to four operations
may be done concurrently during a given memory cy-
cle: SETAG or SHIFTAG; loading M (SETX, LETX);
loading C (SETX, LETX); and COMPARE, READ or
WRITE. An extra half-cycle is required for each ad-
ditional SHIFTAG and for loading different data into
registers M and C (other than all ZERO or all ONE).
FIRSEL executes in 6 cycles and COUNTAG in 12.
Control functions are given in the C language, and are
carried out in parallel with the associative operations,
hence do not contribute to the execution time.

TABLE I

I WORD FORMAT I ---I--- I
1 -- - 1 --- ,

Fig. 1 . ASSOCIATIVE PROCESSOR

CURVE PROPAGATION
WITH THRESHOLD HYSTERESIS

The process starts with every pixel labeled as to
whether it exceeds each of the two thresholds. Pix-
els above high threshold are selected, those under low
threshold are eliminated and the ones between high and
low are returned as candidates. As in Canny edge
detection [5], the propagation rule is to select every
candidate that can be connected to a pixel above high
through a chain of candidates. The propagation p r e
cess is similar to omnidirectional tracking as described
earlier by Rosenfeld and Kak [6], but does not produce
any thinning.

The associative algorithm operates on a 3 x 3 neigh-
borhood of all edge points in parallel, but does it in
three stages: first on the northern neighbors, then on
east-west, and finally on the southern neighbors. Se-
lection can take place a t any stage, thereby enhanc-
ing the propagation rate. The algorithm iterates until
propagation stops. Execution time in machine cycles
is given by,

N
T, = I(32.5 + -)

b
where I is the number of iterations, N is the row length
and b is the extent of long shift. The N/b term ac-
counts for communication with the two neighboring
rows. While the upper bound of I is nearly N2/2,
for a representative value of I = 100 and our case of
N = 512, b = 32, execution time becomes 4850 cycles,
or 146 microseconds. The program is listed in Table 1.

h' EO'
INPUTS : 1) MARK indicate. all pixels G a v e low thrashold.

2) EO indicates all pixels above hiqh threshold.
OUTPUT : EO labels all the edge points found. */

main ()

/ * ... declarations */

letmc d(E0); setaq; compare; I* load Taq with EO */

while ((growth - (new-condition - old-condition)) > thralhold)

/* OR the three northern unambiguous edqes into EO * /
.hittag(-b); ahiftag(-1); write;
shiftaq(1); write; shiftaq(1); write;
save-new-adgem 0 ;

/* OR the left and right unambiquoum edges into EO */
shiftag(1); write; ahiftag(-1); shiftaq(-1): writ*;
save new edge80:

I* OR the-thrza southern unambiquoum edges into EO */
shiftag(b) ; ahiftag(1) ; write;
ahiftag(-1); write; shiftag(-1); write:
save-new-edges () ;

old-condition - new-condition;
new-condition - countaq;

1
I
j* Find nav adpas by m i n g MARK into EO */
save-new-adges0
(

matag; compare;
latc: write;
letmc d(PURX1; compare; letmc d(E0l; write;

1

THINNING

The propagation algorithm presented above pro-
duces a curve that may not be thin. A multi-pass thin-
ning algorithm is proposed, which applies the following
templates

X O X O O X X O O
l P 1 X P l 1 P X
X 1 X X 1 X X 1 X

first in the north direction, then in the south, east and
west directions, in succession. This 4-pass sequence is
iterated until there is no further change. Particularly
worthy of note is the quality of the skeleton produced
by this simple local process. The most precise defini-
tion of a skeleton is based on the medial am's. Davies
and Plummer [7] proposed a very elaborate algorithm
to produce such a skeleton, and chose 8 images for test-
ing it. Our thinning algorithm was applied to these im-
ages and produced most interesting results: the skele-
tons agree virtually exactly with those of Davies and
Plummer; any discrepancy, not at an end-point, oc-
curs at a point of ambiguity and constitutes an equally
valid result. Proof that the algorithm proposed here al-
ways yields the ideal skeleton will be given elsewhere.
A prethinning phase is used to fill isolated ZEROS and
to remove noise that may give rise to extraneous spurs
in the skeleton. Time complexity of the algorithm is
given by,

*** WORD F O W T ***

where the first two term account for the prethinning
phase. Execution times are 150 cycles (4.5 ps) for
prethinning and 214 cycles (6 . 4 ~ ~) per thinning itera-
tion. For edge thinning 3 iterations will suffice, giving
a completion time of 24 microseconds.

Single-pass thinning was considered and found to
be rath-er critical. The algorithm proposed by Chin et
alia [8] appears to be optimal, yet it does not yield an
ideal skeleton, and application of their own preliminary
phase of noise-trimming leads to amputation of some
main branches during thinning.

CONTOUR TRACING AND
LABELING

A preparation step labels each contour point with
its x-y coordinates. The main process is iterative and
operates on a 3 x 3 neighborhood of all contour points
in parallel. Every contour point looks a t each one
of its 8 neighbors in turn and adopts the neighbor's
label if smaller than its own. The circular sequence
in which neighbors are handled appreciably enhances
label propagation. Iteration stops when all labels re-
main unchanged, leaving each contour identified by its
lowest coordinates. The point of lowest coordinates in
each contour is the only one to retain its original label.
These points were kept track of and are now counted
to obtain the number of contours in the image. The
time complexity of the algorithm (in machine cycles)
is given by,

3N 3 N
Zi = 16 + 4 log, N + I[65 + - + 2 log, N(67 + -)I.

b b

Again, the upper bound of I is nearly N 2 / 2 , but for a
representative value of 100 iterations, execution time
becomes 218 kilocycles or 6.6 milliseconds. A good
approximation to the time complexity is,

A list of contours, giving label and number of points,
may be generated in relatively short order (22 cycles
per contour). The program is listed in Table 2.

Ittiage size ia N X N pixels, i.e. coordinates fields are 2Log2(N)
bits in length.

2Log2 (N) 2Log2(N) 1 1 1 1 1 ZLogZ(N) 1
(--______-__---I-------------I--,--I--~--~--~-------------,--~
I---xy-coord---l---operand---l--l----1--I--l----l&el----l--l

temp sf lt gt edge
mark

INPUT FIELDS : -- -

1) xy-coord gives position of all pixels.
2) edge indicates edge points.

INTERHEDIATE (WORKING) FIELDS :
1) label gives x-y coordinates of all edge points.
2) operand gives label of connected edge to be tested.
3) It, gt indicate if operand is less-than or greater

than the 1-1 field.
4) sf switch-flau indicates if label was chanaed

in current-iteration.
5) mark indicates if label was ever exchanged.
6) temp holds edge flag of neighbor under test.

OUTPUT FIELDS :
1) label gives label of contours.
2) mark marks contour starting points. */

main ()
(

/ * ... declarations * /

/" Clear working fields **/
letm daeq(labe1,mark); letc; setag; write;

/*** Uark and label all edge pints "*/
letmc d(edge) ; aetag; compare;
letmc d(mark); write;
for(bit-count-0; bit-count<labe-size; bit-count++)

I

letmc d(xy-coord+bit-count) d(adge); setag; compare;
letmc d (label+bit-count) ; write;

while(new-condition > growth-threshold)
1
letm d(sf) letc; setag; write; /*clear switch flag * I

/"***' CONNECTIVITY TESTING """/
for(window-index-0; window_index<8; window-index++)

1
/+ Shift "edge" and "l&ln into "temp" and "operand" */
letm dseq(temp.operand+label1sire-1); letc; setag; write;
for(bit-count-0; bit-count<label-size+l; bit-count++)

I

letmc d(edge+bit-count); setag; compare;
letmc d(temp+bit-count) ;
general-shift (window-index) ; write;

1

/" Test if "operand" < "label" **/
letm digt) dilt); letc; setag; write;

/* clear greater L less than flags */
for(bit-count-label-size-1; bit-count>-0; bit-count--)
1
letm dledge) d(tem\ d(g+' 4ilt)
d(operand+bit-count) d(l&l+bit-count) ;

letc d(edge) d(temp) d(operand+bit-count) ;
setag; compare;

letc d(edqe) d(temp) d(gt) d(operand+bit-count); write;
letc d(edge) d(temp) d(label+bit-count); setag;compare;
letc d(edge) d(temp) d(lt) d(label+bit-count); write;

1

letmc d(lt); setag; compare;
/+ clear "label" and "mark", set switch flag */
letm dseq(label,label+label-size-1) d(mark) d(sf) ;
letc d(sf); write;
/+ copy "operand" into "label" */
for(bit-count-0; bit-count<label-size; bit-count++)

(
letmc d(operand+bit-count) d(lt); setag; compare;
letmc d(label+bit-count); write;

1

/*; Teat for termination **/
letmc d(af) ; aetag; compare;
new-condition - countag;

I
I*; Find number of contours */
letmc d(mark); setag; compare; countag;

1

/ * GENEWL SHIFT IN 3 X 3 NEIGHBORHOOD
1 2 1 1 1 0 1
I---I---(---I index 0-7 denotes
I 3 I 1 7 1 neighbor position
1_--1---1_-- 1
1 4 1 5 1 6 1 * I

general-shift(index)
int index;
1

CONCLUSIONS

Associative algorithms for contour processing were
presented that achieve remarkable performance with
a modest hardware complement. They were devel-
oped and verified using a simulator of our own design.
When tested on some real as well as synthetic images,
the curve propagation and thinning algorithms, supple-
mented by edge gap filling and short edge removal steps,
produced clean, continuous edge lines.

References

[l] C. C. Foster, Content Addressable Parallel Proces-
sors, Van Nostrand Reinhold Co., 1976, chs. 2 &
5.

12) S. Ruhman, I. Scherson, Associative Processor for
Tomographic Image Reconstruction, Proc. Med-
comp 82 (1982 IEEE Comp. Soc. Int. Conf.
on Medical Comp Sc./Computational Medicine):
353-358.

[3] S. Ruhman, I. Scherson, Feasibility Study of Aseo-
ciative Radar Signal Processing, Internal Report,
Weizmann Institute of Science, October 1984.

[4] S. Ruhman, I. Scherson, Associative Processor
Particularly Useful for Tomographic Image Recon-
struction, U.S. Patent 4,491,932, Jan. 1, 1985.

[5] John Canny, Computational Approach to Edge De-
tection , IEEE Trans. on Pattern Analysis & Ma-
chine Intel. 8: 674698, 1986.

[6] A. Rosenfeld and A.C. Kak, Digital Picture Pro-
cessing, Vol. 2, Academic Press 1982.

[7] E.R. Davis and A.P.N. Plummer, Thinning Algo-
rithms: A Critique and New Methology, Pattern
Recognition 14: 53-63, 1981.

[8] R.T. Chin, H.K. War, D.L. Stover, and R.D. Iver-
son, A One-Pass Thinning Algorithm and its Par-
allel Implementation, Comp. Vision, Graph. k Im-
age Proc. 40: 3@40, 1987.

