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ABSTRACT INSTRUCTION SET 
Associative algorithms are presented that can ac- The machine model is shown on Fig. 1, where the 

complish curve propagation with thresholding in 1.5 ps of memory words is = Nz, image size is 
per iteration, ideal thinning in 6.4 ps  per iteration taken to be N N. ~h~ primitive associative opera- 
and contour tracing and labeling in 66 ps  per itera- tions are given below. 
tion, while operating on a 512 x 512 image. This per- 
formance is achieved in a novel architecture designated Vj = 0,1,2,.. . ,  J - 1 and Vk = 0,1 ,2 , - . . ,  K - 1 
ARTVM (Associative Real Time Vision Machine) with 
a modest hardware complement of 64 associative mem- COMPARE: Tj +- TjUkMk(Ajk @ Ck) 
ory chips (and a microprogrammed controller). rsp t ujTj 

INTRODUCTION 

The classical approach to associative processing, as 
described by Foster [I], uses a few primitives to imple- 
ment all arithmetic and logic functions. These func- 
tions operate on all bits of all words of associative mem- 
ory a t  the same time. Hence such a system may be 
regarded as an  array of simple processors, one for each 
word in memory. Ruhman & Scherson (RkS) [2,3,4] 
introduced shift operations in the responder (tag) reg- 
ister to provide communication between processors, de- 
fined the primitive operations by logic equations, and 
adapted associative memory for modular VLSI imple- 
mentation. Extending this approach to image process- 
ing led to the architecture used in this paper, which 
is designated ARTVM - Associative Real Time Vi- 
sion Machine. In order to perform complex algorithms 
on 2-d images in real time a t  video rate, a word or 
simple processor was assigned to each pixel in the im- 
age. Many of the algorithms operate on a neighbor- 
hood around each pixel, thereby imposing heavier de- 
mands on inter-process communication. The addition 
of a long shift that is a sub-multiple of the image di- 
mensions, satisfies this requirement. Implementation 
is based on a 4K word x 152 bit associative memory 
chip which makes up the bulk of the hardware. To 
handle a 512 x 512 pixel image the machine requires 
64 such VLSI chips. Application of ARTVM to edge- 
detection and stereo-vision will appear elsewhere - the 
contour processing algorithms treated here represent 
an attempt to extend the work to mid-level vision func- 
tions, starting from the primitive curve propagation in- 
volved in dual thresholding of edge points, continuing 
with thinning, and ending with curve tracing, labeling 
and counting. 

WRITE: 
READ: Oj  4- ukAjkTj 
SETAG: Tj + 1 
SHIFTAG(f 1): Tjtl +- Tj 
SHIFTAG(f b): Tjfb 4- Ti (long shift) 
COUNTAG: S + C ,Tj 

FIRSEL: 
1 if j is the first ONE in T 
0 otherwise 

Let X denote any one of t h e  following: 
M (Mask), C (Cornparand), MC (Mask d Cornparand) 
SETX: Xk + 1 
LETX opt1 opt2 opt3 
Where: optl = d(rl), d(rz), . . . , d(ra) 

opt2 = dseq(ul, uz) 
opt3 = dvar (vl, vz, p) 

and options can be intermingled in any order. Then: 
1 Vk = r l , r2,r3,- .- ,ra if opt1 

~ t - v ,  Vk [vl,vz] if opt3 
0 else 

where pi denotes the i-th bit of integer p. 

The symbols H,@ and u stand for or, ezclusive-or 
and or-expansion, respectively. Up to four operations 
may be done concurrently during a given memory cy- 
cle: SETAG or SHIFTAG; loading M (SETX, LETX); 
loading C (SETX, LETX); and COMPARE, READ or 
WRITE. An extra half-cycle is required for each ad- 
ditional SHIFTAG and for loading different data into 
registers M and C (other than all ZERO or all ONE). 
FIRSEL executes in 6 cycles and COUNTAG in 12. 
Control functions are given in the C language, and are 
carried out in parallel with the associative operations, 
hence do not contribute to the execution time. 



TABLE I 

I WORD FORMAT I ---I--- I 
1 -- - 1 --- , 

Fig. 1 . ASSOCIATIVE PROCESSOR 

CURVE PROPAGATION 
WITH THRESHOLD HYSTERESIS 

The process starts with every pixel labeled as to 
whether it exceeds each of the two thresholds. Pix- 
els above high threshold are selected, those under low 
threshold are eliminated and the ones between high and 
low are returned as candidates. As in Canny edge 
detection [5], the propagation rule is to select every 
candidate that can be connected to a pixel above high 
through a chain of candidates. The propagation p r e  
cess is similar to  omnidirectional tracking as described 
earlier by Rosenfeld and Kak [6], but does not produce 
any thinning. 

The associative algorithm operates on a 3 x 3 neigh- 
borhood of all edge points in parallel, but does it in 
three stages: first on the northern neighbors, then on 
east-west, and finally on the southern neighbors. Se- 
lection can take place a t  any stage, thereby enhanc- 
ing the propagation rate. The algorithm iterates until 
propagation stops. Execution time in machine cycles 
is given by, 

N 
T, = I(32.5 + -) 

b 
where I is the number of iterations, N is the row length 
and b is the extent of long shift. The N/b term ac- 
counts for communication with the two neighboring 
rows. While the upper bound of I is nearly N2/2, 
for a representative value of I = 100 and our case of 
N = 512, b = 32, execution time becomes 4850 cycles, 
or 146 microseconds. The program is listed in Table 1. 

h' EO' 
INPUTS : 1) MARK indicate. all pixels G a v e  low thrashold. 

2) EO indicates all pixels above hiqh threshold. 
OUTPUT : EO labels all the edge points found. */ 

main ( )  

/ *  ... declarations */  

letmc d(E0); setaq; compare; I* load Taq with EO */ 

while ( (growth - (new-condition - old-condition)) > thralhold) 

/*  OR the three northern unambiguous edqes into EO * /  
.hittag(-b); ahiftag(-1); write; 
shiftaq(1); write; shiftaq(1); write; 
save-new-adgem 0 ; 

/*  OR the left and right unambiquoum edges into EO */ 
shiftag(1); write; ahiftag(-1); shiftaq(-1): writ*; 
save new edge80: 

I* OR the-thrza southern unambiquoum edges into EO */ 
shiftag(b) ; ahiftag(1) ; write; 
ahiftag(-1); write; shiftag(-1); write: 
save-new-edges ( )  ; 

old-condition - new-condition; 
new-condition - countaq; 

1 
I 
j*  Find nav adpas by m i n g  MARK into EO */  
save-new-adges0 
( 

matag; compare; 
latc: write; 
letmc d(PURX1; compare; letmc d(E0l; write; 

1 

THINNING 

The propagation algorithm presented above pro- 
duces a curve that may not be thin. A multi-pass thin- 
ning algorithm is proposed, which applies the following 
templates 

X O X  O O X  X O O  
l P 1  X P l  1 P X  
X 1 X  X 1 X  X 1 X  

first in the north direction, then in the south, east and 
west directions, in succession. This 4-pass sequence is 
iterated until there is no further change. Particularly 
worthy of note is the quality of the skeleton produced 
by this simple local process. The most precise defini- 
tion of a skeleton is based on the medial am's. Davies 
and Plummer [7] proposed a very elaborate algorithm 
to produce such a skeleton, and chose 8 images for test- 
ing it. Our thinning algorithm was applied to these im- 
ages and produced most interesting results: the skele- 
tons agree virtually exactly with those of Davies and 
Plummer; any discrepancy, not at an end-point, oc- 
curs at a point of ambiguity and constitutes an equally 
valid result. Proof that the algorithm proposed here al- 
ways yields the ideal skeleton will be given elsewhere. 
A prethinning phase is used to fill isolated ZEROS and 
to remove noise that may give rise to extraneous spurs 
in the skeleton. Time complexity of the algorithm is 
given by, 



*** WORD F O W T  *** 

where the first two term account for the prethinning 
phase. Execution times are 150 cycles (4.5 ps) for 
prethinning and 214 cycles ( 6 . 4 ~ ~ )  per thinning itera- 
tion. For edge thinning 3 iterations will suffice, giving 
a completion time of 24 microseconds. 

Single-pass thinning was considered and found to 
be rath-er critical. The algorithm proposed by Chin et 
alia [8] appears to be optimal, yet it does not yield an 
ideal skeleton, and application of their own preliminary 
phase of noise-trimming leads to amputation of some 
main branches during thinning. 

CONTOUR TRACING AND 
LABELING 

A preparation step labels each contour point with 
its x-y coordinates. The main process is iterative and 
operates on a 3 x 3 neighborhood of all contour points 
in parallel. Every contour point looks a t  each one 
of its 8 neighbors in turn and adopts the neighbor's 
label if smaller than its own. The circular sequence 
in which neighbors are handled appreciably enhances 
label propagation. Iteration stops when all labels re- 
main unchanged, leaving each contour identified by its 
lowest coordinates. The point of lowest coordinates in 
each contour is the only one to retain its original label. 
These points were kept track of and are now counted 
to obtain the number of contours in the image. The 
time complexity of the algorithm (in machine cycles) 
is given by, 

3N 3 N 
Zi = 16 + 4 log, N + I[65 + - + 2 log, N(67 + -)I. 

b b 

Again, the upper bound of I is nearly N 2 / 2 ,  but for a 
representative value of 100 iterations, execution time 
becomes 218 kilocycles or 6.6 milliseconds. A good 
approximation to the time complexity is, 

A list of contours, giving label and number of points, 
may be generated in relatively short order (22 cycles 
per contour). The program is listed in Table 2. 

Ittiage size ia N X N pixels, i.e. coordinates fields are 2Log2(N) 
bits in length. 

2Log2 (N) 2Log2(N) 1 1 1 1 1 ZLogZ(N) 1 
(--______-__---I-------------I--,--I--~--~--~-------------,--~ 
I---xy-coord---l---operand---l--l----1--I--l----l&el----l--l 

temp sf lt gt edge 
mark 

INPUT FIELDS : -- - 

1) xy-coord gives position of all pixels. 
2) edge indicates edge points. 

INTERHEDIATE (WORKING) FIELDS : 
1) label gives x-y coordinates of all edge points. 
2 )  operand gives label of connected edge to be tested. 
3) It, gt indicate if operand is less-than or greater 

than the 1-1 field. 
4) sf switch-flau indicates if label was chanaed 

in current-iteration. 
5) mark indicates if label was ever exchanged. 
6 )  temp holds edge flag of neighbor under test. 

OUTPUT FIELDS : 
1) label gives label of contours. 
2) mark marks contour starting points. */ 

main ( )  
( 

/ *  ... declarations * /  

/" Clear working fields **/ 
letm daeq(labe1,mark); letc; setag; write; 

/*** Uark and label all edge pints "*/ 
letmc d(edge) ; aetag; compare; 
letmc d(mark); write; 
for(bit-count-0; bit-count<labe-size; bit-count++) 

I 

letmc d(xy-coord+bit-count) d(adge); setag; compare; 
letmc d (label+bit-count) ; write; 

while( new-condition > growth-threshold) 
1 
letm d(sf) letc; setag; write; /*clear switch flag * I  

/"***' CONNECTIVITY TESTING """/ 
for(window-index-0; window_index<8; window-index++) 

1 
/+  Shift "edge" and "l&ln into "temp" and "operand" */ 
letm dseq(temp.operand+label1sire-1); letc; setag; write; 
for(bit-count-0; bit-count<label-size+l; bit-count++) 

I 

letmc d(edge+bit-count); setag; compare; 
letmc d(temp+bit-count) ; 
general-shift (window-index) ; write; 

1 

/" Test if "operand" < "label" **/ 
letm digt) dilt); letc; setag; write; 

/*  clear greater L less than flags */ 
for(bit-count-label-size-1; bit-count>-0; bit-count--) 
1 
letm dledge) d(tem\ d(g+' 4ilt) 
d(operand+bit-count) d(l&l+bit-count) ; 

letc d(edge) d(temp) d(operand+bit-count) ; 
setag; compare; 

letc d(edqe) d(temp) d(gt) d(operand+bit-count); write; 
letc d(edge) d(temp) d(label+bit-count); setag;compare; 
letc d(edge) d(temp) d(lt) d(label+bit-count); write; 

1 

letmc d(lt); setag; compare; 
/+  clear "label" and "mark", set switch flag */ 
letm dseq(label,label+label-size-1) d(mark) d(sf) ; 
letc d(sf); write; 
/+  copy "operand" into "label" */ 
for(bit-count-0; bit-count<label-size; bit-count++) 

( 
letmc d(operand+bit-count) d(lt); setag; compare; 
letmc d(label+bit-count); write; 

1 

/*; Teat for termination **/ 
letmc d(af) ; aetag; compare; 
new-condition - countag; 

I 
I*; Find number of contours */ 
letmc d(mark); setag; compare; countag; 

1 

/ *  GENEWL SHIFT IN 3 X 3 NEIGHBORHOOD 
1 2 1 1 1 0 1  
I---I---(---I index 0-7 denotes 
I 3 I 1 7 1 neighbor position 
1_--1---1_-- 1 
1 4 1 5 1 6 1  * I  

general-shift(index) 
int index; 
1 



CONCLUSIONS 

Associative algorithms for contour processing were 
presented that achieve remarkable performance with 
a modest hardware complement. They were devel- 
oped and verified using a simulator of our own design. 
When tested on some real as well as synthetic images, 
the curve propagation and thinning algorithms, supple- 
mented by edge gap filling and short edge removal steps, 
produced clean, continuous edge lines. 
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