
lAPR Workshop on CV - Special Hardware and Industrial Applications OCT.12-14, 1988, Tokyo

An Image Processing Language for Step-by-step Development of
Image Processing Systems Consisting of Special-purpose Hardwares

and/or Micro-programmed Processor

Koichiro DEGUCIII

Faculty of Engineering, University of Tokyo
Tokyo 113 Japan

ABSTRACT

An image proccssing language was developed to
define several types of image processing and execute
them on high-speed image processing systems used in
research laboratories. It is common to apply a combined
series of simple basic opcrations (called image processing
primitives) on imagc data stcp by step. And it is also
common to construct high-spccd image proccssing systcm
by combining scvcral spccial purpose hardwares and/or
micro-program modulcs for high-speed processor for
thosc basic primitivcs. Bccausc those special hardwarcs
and micro-programs arc usually not easy to be imple-
mcnted nor flexible, thcy must be improved wcll prior to
the irnplcmentation. This language supports the efficient
development of programs on high-speed image processor
by making primitives into macro-primitives stepwisely
with confirming their performances, even at the same
time of the system construction.

1. Introduction

For image proccssing. it is common to apply combined simple
basic opcrations on imagc data stcp by stcp. And it is also common
to construct high-spccd imagc processing systcm by combining
scvcral spccial purpose hardwarc and/or micro-program modules
which have good or weak capabilities for each basic opcrations,
rcspeclively. Then it is important to distribute each basic opcrations
to the most suitablc processors for such a complex systcm. But,
bccausc thc configuration of those processors might be changed
according to hardware dcvclopments, and each basic operation itself
must be improved also according to system reconfigurations and
algorithm rcfinemcnts, it is imporwnt to have efficient language sup-
pon for development of programs on high-speed image proccssor as
wcll as for the systcm construction at the same time.

In this paper, a prototype of the language system is presented for
this purpose. In this language, each of the opcratjons is expressed
using functions. and the sequence of the operations is dcscribcd with

combinations of the functional expressions. The user can define
complex image processings interactively by combining the simple
functions of image processing primitives or their macros. At that
time, the system improvements can be took place independently of
the user program developments.

2. High-Speed Image Processing and Program Development

2.1 Target Image Processing System
The configuration of an image processing systcm which is the tar-

get of the installation of the language dcvelopcd is shown in Fig.],
for example. Of course, this language is not only for this systcm.
The systcm has thrcc groups of processors, (1) a host mini-computer
(HOST). (2) micro-program driven high-speed imagc proccssor (IP).
and (3) spccial hardwarcs for rather simple basic processings with
video memory (VM). The characteristics of these groups are listed
on Table 1.

The host computer controls the total systcm. The microprograms
on IP are loaded and started by the host computer every time needed.
Each special hardware on VM is driven by commands from the host.
It is intended that rather complex image processings are took place

Table 1. Characteristics of processors.

Processor

HOST

IP

VM

Fig. 1 Configuration of the high-speed image processing system the prototype of
the language i s installed.

Performance

Not high-speed
(General

purpose)

High-speed
(Special-

made LSI)

High-speed
(Spec ia 1

hardwares)

IP: Micro-programmed
Image Processor

Graphic Display-
Plotter-

Programing

High-level
language

Micro-
program

Fixed

-
Digitizer--

etc. -
HOST

Mini-computer I
 disk^
MT

VM: Video Hemory with
Spec ia 1 Hardwares

IAPR Workshop on CV - Speaal Hardware and Industrial Applications OCT.12-14. 1988. Tokyo

(1) Algorithm I (2) Development of
b a s i c p r i m i t i v e s

(3) P r i m i t i v e 4m sequence

+
(4) h c r o - p r i m i t i v e

(5) High-speed p r i m i t i v e *i]* 1
Fig. 2. The s tep-wise improving developments

of image p r o c e s s i n g programs t h e language
suppor t ing .

with high-speed on IP and simple and regular processings mainly
accompanied with input or output of images are on VM.

So, we must distribute image processing operations to their suitable
processing elements. However, this is not so straight-forward. First,
the construction of micro-programs are usually not easy and must be

improved well prior to the implementations. Secondly, the user want
to test the performance of the algorithm of image processing by
using familiar and flexible high-level language on the host computer
at the first step of program development. And, some special
hardwares will be added to the system in future and the system bill
be reconfigured.

Therefore, an image processing language which supports program
developments as well as hardware improvements is needed for such a
high-speed processing system especially in research laboratories.

2.2 Step-by-step Program development
We call simple basic unit image processing operations. such as

filtcrings, binarizations or contour extractions, primitive operations.
And image processings are performed by combining the primitives.
Each the primitives are distributed and operated by each processor
modules in the system. On the other hand, each modules must be
improved well prior to the implementation for high-speed processings
independently of the program developments. Then. the language for
development of image processing program on such high-speed image
processing system must have capability to support also the dcvelop-
ment of hardware. That is, it is important that the users need not
mind the configuration of the system, or if lhose primitives are
operated with special hardware, micro-programmed processor, high-
level language programmed host computer or their combinations, and
when the reconfiguration of these implementations are took place.

For this purpose, this language supports the developments of image
processing programs through next stepwise refinement processes
(Fig. 2);

(1) develop the prototype image processing program on host com-
puter, if necessary, using even a high-level language to confirm its
algorithm and performance,

(2) sub-divide and reduce the progr'am into a sequencc of basic
image processing primitives, some of which may be already imple-
mented as special hardwares or micro-programs on the sysam, and
others may be in high-level languages,

(3) perform the image processing by sequentially operate the series
of primitives and confirm the results,

(4) replace the useful primitive with high-speed versions by special
hardwares or micro-programmed procedures, and the useful series of
primitives with macro-primitive which can be operated by calling ils
given name in batch. and,

(5) implement the useful series of primitives into one basic primi-
tive as a special hardware or micro-programmed procedure.

For the system having such several types of processing modules, it
is efficient to develop the programs by this stepwise improvement
using macro descriptions and revision into high-speed versions of
processings. And it is also imporlant that thc system hardware or
micro-program improvements can be took place indcpcndcnlly of the
user program development. espccially for the systems used in
research laboratories.

3. Description of Image Processing Algorithms using Functions

3.1 Functional Expression of Image Processings
Because most image processings can be conslructed with step-by-

step sequential basic operations, it is useful to register the each basic
operations as common image processing primitives not only for pro-
gramming~ but also for descriptions of the algorithms.

Using functions for these primitives, the above sequential opcra-
tions are interpreted as a sequence of stepwisely applying next

function on each output the previous function returns. We denote
the output the function f unc applied on image IN

The f unc returns the value having the "type" which is defined as the
type off unc . Therefore, when we want to apply "Image type" func-
tion f unc 1 on an image I N , next f unc 2 on its output, then f unc 3
sequentially, and to obtain an image OUT as a final output, the
operation is expressed as

OUT = f unc 3(f unc2(f unc 1(IN))) .
If a function requires a number of arguments IN 1, I N 2 and I N 3 , for
example, the expression becomes

When some output data, which might be final or intermediate ones,
must be saved for later uses. they must bc assigned to a given namc
for the data.. For the case whcre more than one output are required.
this is not seldom in image processings, muldplc outputs can be
obtained by the way of so-called side effects using this assignments.
for example,

OUT = f unc 2(MID = f unc 1(IN))

These schematics are shown in Fig. 3. And examples of the descrip-
tion of image processing procedures using this language are shown in
Fig. 4.

3.2 Data Types
In image processings, an application of each processing primitive

IAPR Workshop on CV - Spedal Harctware and Industrial Applications OCT.12-14. 1988. Tokyo

IN * m IN

(a) OUT = func(IN) (b) WT = func3(funcZ(funcl(IN 1))

funcl func2 * func3 nun
(c) O(I'Pffunc(I~l.1~2, IN3) (d) OUT = f u n d (HID = funcl(IN)) I

Fig.3. Schematics of the functional expression of the
sequence of image processing operations.

I A ~ Y range(LADY 1
Fig. 5. Example o f execut ion of t h e

macro-f unc t ion range.

has its own meaning only on data of specific type. SO, by checking 4. Outlines of the Language Specifications
the match of types between the data and the function to apply.
definitions of meaningless operation or mistakes can be avoided 4.1 Programs
easily. In FigA(b), histogram(IN) is a function to calculate the The details of the syntax of the language developed and its imple-
histogram of gray levels of the image I N . and specified that it can mentation were described in 121, and here its outlines are described
accept only "image type" data. Then, it outputs an "array type" data briefly. Programs for image processing using this language usually
which is assigned to also "array type" data I f f S T . The valley is consist of the declaration part and the execution part.
specified to accept "array type" dala and returns "value type" data. The each sentence of the execution part has the form

[<outpub=] function(<argumenu[, <argumcno] . . .)
3.3 Macro Functions

A scquence of operations can be dcfined as a new function, callcd a and are separated by ";". An intermediate outputs are discarded after
macro function, having its own name. To dcfinc the macro function evaluation by next function, that is, for example, the output off unc 1

a system command described later is used. As a function of "range in
filtering", for example, can be defined as a subtraction operation of OUT = f unc2(f unc 1(IN))
output of "minimum filtering" min from bat of "maximum filtering"
mar, by the definition, will disappear. But, by defining

.def range ($1) OUT = func2(MID = func 1(IN)) ,

sub(mar($x), min($x)) ,

(where $ denotes an argument) the function of range filtering will be
available later by

range (IN) .

Macro functions are registered as the text defining them, and
expanded into a sequence of functions at the executions. They can
be "nested with arbitrary levels in their definition, that is, macro
function can be defined by using also macro functions. As is men-
tioned. useful macro functions can be up-graded into unit high-speed
primitives by the system manager at any time. It is important that
the users need not mind what kind of primitive functions just they
are using.

the data will remain and can be referred by the name M I D . This is
because the assignments themselves return the value of type same as
the assigned data.

In this language, control statements are also given as functions. It
has functions if, when, unless and so on. They are used as

if(~condition>,<Suncfionl>.~uncfion2>)
when(<condilion>,<funcfion>)
unless(<condi(ion>.<funcfion>)

and according to the conditions the argument functions will be exe-
cuted or not.

The declaration part consists of name, expression and type
definitions and declarations. User dcfined types are available as well
as macro definitions. The basic types and their substantial values to

d i s p l a y (PARTICLE) HIST=histogram(PAHTICLE) LEVEL=val ley(HIST);
display(thrshld(PART1CLE. LEVEL))

C a l c u l a t e h i s togram (histogram) o f t h e image PARTICLE, f i n d t h e t h r s h l d v a l u e LEVEL from t h e
h i s togram (v a l l e y) and b i n a r i z e t h e o r i g i n a l image.

Fig. 4. Example of d e s c r i p t i o n s o f image processings.

IAPR Workshop on CV - Speaal Har6ware and Industrial Applications OCT.12-14. 1988. Tokyo

Table 2. Basic types and t h e i r values.

Substant ia l r e tu rn value

pointer t o t h e top address

I value I pointer t o t h e value s to red I 1 a r r a y I pointer t o t h e top of t h e
d a t a a r r a y

1 boo1 1 pointer t o the b m l i a n value I
I user-defined pointer to t h e spec i f i ed I record I

be returned are listed in Table 2.

4.2 Primitives
In this language, formally, image processing primitives are thought

of not only simple basic processing elements but also macro-
functions, values, image data, and so on, which are referred by their
name in the programs. They are classified by their own attributes as
listed in Table 3, but the programmer need not minds the attributes.
For example. an actual image data and a function generating a image
data need not be distinguished by users if both have image type and
the function generates the same image data. This is the basic
mechanism enabling the stepwise improvements of primitives.

In addition to the primitives listed as entries of library, users can
register new primitives using system commands.

4.2 Operation modes
The language system has two operation modes, the direct and the

batch modes. In the direct mode, a sentence is expandcd into a
sequence of primitives and executed immediately after input of the
statment line. This mode is for interactive program developments by
step-by-step checking of the operations.

In the batch mode, a total program is expanded into a sequence of
image processing primitives, and linked to the tail of a list called
"object list". The object list is a sequcnce of primitives to be exe-

Table 3. At t r ibutes of some primitives.

Table 4. System commands.

A t t r ibu te

en t ry

q icro-
program

macro
funct ion

value

d a t a

b

. i n i t i n i t i a l i z e the system.

. q u i t terminate the system.

. { i n i t i a l i z e object 1 ist.

. I execute the sequence of
pr imi t ives on ob jec t list.

. exec execute t h e spec i f i ed
primitive.

. Is, . lsa 1 ist t h e name defined.

. def de f ine macro function.

. set de f ine values o r etc..

. rm remove defined name.

e tc .

Substant ia l e n t i t y

en t ry of t he function of
opera t ion

micro-program t o be loaded
on high-speed processor

t e x t def in ing the sequence of
opera t ions

va 1 ue

name pointing t o some kind of
data

cuted, and executed in batch by using a system command described
,me-- supported.
lillC1.

The major features remained for the language to have higher capa-
Using these two modes properly, the programmer can chcck his

bilities are a suppon for block structure of programs and a versatility
operation step-by-step and retry a sentcnce at a half way of his pro-

for definitions and references of data types.
gram, so that the program on the high-speed image processing sys-
tem can be developed effectively.

4.3 System commands
The system has commands to manage the total system, some of ~~f~~~~~~~

which are listed in Table 4, for example. These commands can be
[l] M.Duff edt.. Languages and Architectures for Image Process-

executed at any time to define names, macros or types, or execute
ing, Academic Press (1981).

image processings etc.
[2] K.Dcguchi, "An Image Processing Language for the Systcm

5. Conclusions

Having Multiple Image Processors." Technical Report. Inlor-
mation Processing Society of Japan. SE52-21. 161/168 (1987)
(in Japanese).

A language for image processing systcms having multiple proccss-
ing elements was presented, and its implcmcntation on a prototype
system was describcd. In this language, image processings are con-
structed as sequences of primitive opcrations. By describing the
primitives as forms of functions, the process of the image processing
can be represented clwly. And effective step-by-step program
developments as well as step-by-step hardware improvements are

