
IAPR Workshop on CV -Special Hardware and Industrial Applications OCT.12-14. 1988. Tokyo

A hardware architecture for robot path planning.

Pieter P. Jonker , Simon T. Dekker, Ben J.H. Verwer
Faculty of Applied Physics

Delft University of Technology
Lorentzweg 1

2628 CJ Delft, The Netherlands

Abstract

Robot paths can be planned in quantized
configuration spaces. Each configuration represents
an unique location of the robot. If a matrix of
prohibited and permitted transitions is available,
paths can be found in the configuration space by
heuristic search algorithms. We have studied algo-
rithms and architectures for finding these paths.

We propose a hardware architecture that uses an
implementation of the A*-algorithm; a uniform cost
search algorithm. Simulations have shown that in a
three dimensional quantized configuration space of
323 a path can be found in less than 15 ms if 16
processing elements are employed.

The problem definition of robot path planning is':
"Given a moving object, (A), a set of stationary
objects, (Bi), at known positions, a legal initial
position of A, s, and a legal goal position of A, g, find
a sequence of motions that take A from s to g ,with-
out colliding with any of the Bi." Note that this
definition does not include planning of servo actions
that minimize the travel time along or close to a
predefined path, nor does it include grasp planning
or fine motion planning (compliant motions); actions
which 'collisions' in the above mentioned
sense.

Collision avoidance is an extension of the path
planning problem. An uncertain environment with
moving obstacles is assumed.

In this paper a free space method* based on
quantized configuration spaces3 is used. A
configuration space is a space in which each point
represents a unique position of a robot in the real
world. Each adjacent pair of points in configuration
space receives a label, prohibited or permitted, de-
pendent on whether or not a movement of the robot
between those points would result in a collision.
However, the transformation of a given robot, (A),
and a given set of obstacles, (Bi), into a map of
prohibited and permitted transitions is not the
subject of this paper. Adjacent points in
configuration space are points which coordinates do
not differ more than 1 in each dimension. The metric
in the configuration space can be chosen to
approximate the euclidean distance.8 Good integer
approximations of the euclidean distance can be
derived,'*.l3. E.g. for two dimensions, the horizontal
and vertical transition costs 5 and the diagonal
transition costs 7 lead to a maximum relative error of
4.21 % after scaling with 5.71.

Verwerlo proposed to use a standard heuristic
search method in the configuration space: the A'-
algorithm.14115 We will present here a possible
hardware architecture for an implementation of this
search algorithm used in quantized configuration
spaces, usable for real time robot path finding.

The A*-alaorithq

The robot path finding problem naturally falls into
the class of graph search problems. The nodes of
the graph are points in the N-dimensional
configuration space. All nodes are locally
connected, except for obstacle points, which are not
connected at all (see figure 1).

Heuristics information is incorporated by an
evaluation function f, which is the sum of two
functions g and h. In graph terminology, g(n) repre-
sents the costs from the start node s to node n and
h(n) represents an estimate of the costs from node n
to the goal node g. A* is guaranteed to find the
cheapest path if h(n), the heuristic function, is
chosen optimistically.

If h(n) is assigned the value zero, the A*-
algorithm degenerates into a uniform cost algorithm.
In that case waves of equal cost are propagated
from the start node in all directions, until the goal
node is reached. If h(n) is increased to the maximum
still optimistic value d of the costs from node n to the
goal node g, the algorithm first expands nodes in
the direction of the goal node and later, when
obstacles are encountered, nodes in other

IAPR W0rksh0p on CV - Special Hardware and Industrial Applications OCT.12-14. 1988. Tokyo

directions. We found that the applicabillry o f performance, relative to the case were only
heuristic information therefore decreased with the heuristic information is used.
complexity of the search space. When using directional information, a priori

The A'-algorithm can be described in 4 steps, pruning of the search graph is possible. The savings
see figure 1 : consist of a reduction in the mean number of

1) Mark the start node s 'open' and calculate an successors. Normally, nodes are opened many
evaluation function f(s). times before they receive the label 'closed'. If

2) Select the open node n whose f value is directional information is used this inefficiency
smallest. If ties occur, resolve in favour of a diminishes. All nodes adjacent to a generating node
goal node. that can be reached via a cheaper path from the

3) If n is a goal node, mark n 'closed' and node which generated the generating node (see
terminate the algorithm. figure 2) are not considered as successors. Of

4) Othewise, mark node n 'closed', calculate f course One has to check if the cheaper path is not
for each successor node of n and mark 'open' prohibited.
each successor node not already marked
'closed'. Remark as 'open' any closed node ni
which is a successor of n for which f(ni) is
smaller now than it was when ni was marked
'closed'. Goto step 2.

Feasibilitv of A'- im~lementation~

The calculation most intensive part of the A*-
algorithm is the selection of the node with the lowest
f value. A sorting algorithm is required here. Bucket
sort is the most efficient sorting algorithm, linear in
the number of nodes to be s0rted.13~16 It can be
used with bounded, integer valued transition costs.
The 'open' nodes are stored in buckets. Each
buckets has an f value associated with it; nodes with
equal f values are stored in the same bucket. The
buckets are processed one by one, starting with the
bucket with the lowest f value associated with it (in
which the start node s is stored).Processing a
bucket consists of retrieving each node stored in it
and generating successors for each retrieved node.
Successors are adjacent nodes which are not yet
labelled 'closed'. The f value of the successors is
calculated, after which they are stored in the ap-
propriate buckets. A node for which all successors
have been generated is labelled 'closed'. Because
the maximum difference in f values of generated
successors is twice the maximum transition cost, a
Jimited number of buckets suffices.

To obtain a feasible hardware architecture,
several implementations of A* have been com-
pared, both theoretically and in simulations.
Simulations were performed both on functional level
as well as on register transfer level. Four 2-D (size:
2562) and four 3-D (size: 323) test images were
used. In the 2-D as well as in the 3-D case the test
images consisted of an empty image, an image with
a few rectangular constraints, a more complicated
constraint image and finally, a maze. The 2-D
images are referred to as a,b,c&d; the 3-D images
as e,f,g&h. The evaluations and results are reported
in 17 and are summarized below:

Both searching from start and goal node
simultaneously with using heuristic information
decreases the total number of nodes expanded. In
the case of using heuristic information (with h(n) the
'as the crow flies' distance to the goal) the savings
are highest for simple images. The same applies in
the case of employing a bi-directional search. Most
important however is that the mechanisms impede
each other. Employing a bi-directional search if
heuristic information is used degrades the

Simulations showed that this method (DIR) yields
a 50% reduction in the 2D and 3D test images, but
savings diminish in higher dimensions. An adjusted
method (SDIR) which allows only smooth direction
changes (1,7 & 8 in figure 2) exhibit increasing
savings in higher dimensions but might miss the
solution path if the constraint image contains 1 pixel
thick passages.

A postiori pruning of the search graph is also
possible if only the successor that is 'better' (in
terms of 'best evaluation value so far') than the
previously generated successor to the same node
will be inserted in 'open'.

Hardware

Due to the evaluation of the functional
simulations it was decided to focus on an
architecture for the A' algorithm using bi-directional
search, a priori pruning methods DIR or SDIR, a
postiori successor pruning and (optional) heuristics.

An obvious source of parallelism in the A*
algorithm is the wave front of equal cost that has to
be expanded. It was decided that the path finding
mach~ne (PFM) should consist of identical
processing elements (PEs), in which each PE
handles a number of 'open' nodes. Moreover, the
PEs should only have access to a mutually disjoint
subset of the large data structures. We will elaborate
on this later. Each PE can access the data on only a
subset of the nodes in the search graph.
Communication between the PEs remains
necessary to exchange successor nodes. Figure 3
shows the architecture of the PFM consisting of a

IAPR Worksho~ on CV - Speaal Hardware and Industrial Applications OCT.12-14. 1988. Tokyo

number of PEs, a data switch network and a
single global controller.

To improve the performance for systems with a
large number of PEs, the 'S' element can be used to
connect different rings together. A candidate
interconnecting structure is a hypercube, see figure
5. An N-dimensional cube can be constructed by
inserting N 'S' elements in the ring. E.g. a 256-PE

The global controller synchronizes the PEs path finding engine could consist of 64 rings of 4
and might be implemented on a conventional PE's, where each 4-PE ring has 6 'S' elements to
sequential processor. The input and outputs of a PE connect it with other rings.
are reset, increment-f, bucket-empty , ready and
nearly-full. During the actual search process, the
global controller has only a passive job, which can
even be implemented with some logic. If. reset is
asserted all PEs clear their current evaluation value
f. After reset, each PE starts to process the nodes in
the bucket indicated by their local f value. When a
PE is ready with this bucket it asserts the
bucket-empty signal. The PEs may however
proceed with the next buckets, (f+l), (f+2), ... until
the bucket number exceeds f+d; d being the minimal
transition cost (e.g. 5). Note that proceeding is
allowed since buckets with index f generate
successors with an evaluation value of at least f+d.
The global controller waits until all PEs assert the
bucket-empty signal. At that moment, increment-f is
asserted and all PEs are enabled to proceed. If
some PE detects the end condition, it sends the
ready signal to the global controller, which then
terminates the search. The global controller's active
tasks are initialization and finding the final solution
path.

The data switch network transfers successor
node data between PEs and can be implemented
for a modest number of PEs with a synchronous
data bus.

If the PFM consists of more than a modest
number of PEs the switch is more difficult to
implement and will become the engines bottle-neck.
A variant of the token ring approach as used in the
Manchester data flow systemla and the lMage
Pipeline Processor from NEC 19 can be used. Since
the Successor nodes (the tokens) have a fixed A draw back of the distributed computing
structure, and a delay between sending a node and architecture is that parallelism cannot be forced; we
receiving this node does not matter, this approach is must h o ~ e !hat the nodes in the buckets are
applicable. PEs are connected in a local ring, see distributed uniformly over the PEs. The dlstrlbutlon
figure 4. The elements labeled 'S' are token of the nodes of the search graph (the wave front)
switches. If a token on the global ring enters such a over the PE'S is a fixed, fine grained, spatial
token switch, it is checked whether an address field distribution, and is implicitly executed by the
in the token matches the address of the Current PE. coordinate mapping function. This function assigns
If SO, the token enters the PE; if not the token is Sent a p~ number to a coordinate. was decided to use
to the next 'S' element. Tokens in the global ring a simple mapping function based on the binary
have a higher priority than tokens produced by the representation of the coordinates: The least
PEs. significant bits of the coordinates are used as PE

address. Simulations showed that the total number

lAPR Workshop on CV - Special Hardware and Industrial Applications OCT.12-14. 1988. Tokyo

of input nodes in 'open' was divided a lmost
uniformly over the PEs, with as notable exception
one of the 8 test images; a generated 3D maze,
which was too regular to achieve an even
distribution.

Figure 6 shows the architecture of a processing
element. Each PE is a synchronous pipeline that
handles, enabled by the global controller, a number
of open nodes. Each clock cycle every PE
generates a successor node, which is either stored
in its own input FlFO or over the network in the FlFO
of another PE.

Figure 6. The architecture of a Processing Element.

The PE consist of a number of pipelined
functional units, each with memory for data and
parameters. The individual tasks of those units are
listed below:

INPUT-FIFO
On the average, the OPEN manager processes
input nodes at the same speed as the successor
generator creates them. However, the momentary
node rate can be higher, since at times successors
from different PEs can all be sent to the same PE.
The FlFO generates the nearly -full signal, which
can be used to temporarily hold the successor
generators of other PEs.

PRUNING-UNIT
Uses a 'best evaluation array' or 'distance image',
which keeps for every node coordinate the best
evaluation value so far. Only nodes that are 'better'
than the best evaluation value so far may pass. The
array can also be used as traverse1 tree by the
global controller to find the final solution path.

OPEN manager
The administrator of the local 'open' data structure,
organized in buckets. Incoming nodes are stored in
the bucket indicated by its f value. Out comming
nodes are retrieved from bucket {fxl(fsfZ<f+d)). The
buckecempty signal is generated by this block.

CHECKING unit
The unit interacts firstly with the CLOSED array. It
checks whether the input node is an element of
'closed'. If the node was an element of 'closed', it is

discarded. If not, it checks whether the end condition
is met. Then the ready signal is asserted. If not, it is
checked whether the node is an element of the
CONSTRAINT image; then it is discarded.
Optionally it has an interface with some external
constraint checking hardware (e.g. for moving
objects).

SUCCESSOR generator
This unit actually expands a node. The full
coordinate must be restored in this unit from the
local coordinate and the PE number. Depending on
a direction field of the node, successors can be
generated from a table, which can be filled with DIR-
or SDlR types of successors. The new evaluation
value is generated for each successor. Optionally a
cost index storage can be connected containing a
cost index for each local node coordinate. (To allow
space dependency of costs; e.g. transitions near
objects can be given higher costs.) The successor
generator has a heuristic unit to calculate the
heuristic function h.

For the register transfer simulation of the PFM, each
of the units was further refined and the following
assumptions were made:
All units of the PE are separated with pipeline
registers and a two phase clock is used:
(01 ;compute and 02;transier). All units can be
constructed in such a way that the processing time
needed for a for a compute step is twice the cycle
time of the DRAMS used for the tables. Hence a
realistic cycle time is 400ns. All units take one
elementary cycle, except for the successor
generator which takes one cycle per generated
successor. If a heuristic function is used, two cycles
per successor are necessary.
The simulations have been run for 8 test images
{a ... h} using all combinations of unidirectional / bi-
directional search, pruning / no pruning and
heuristics / no heuristics . A priori pruning was not
applied, since the benefits of this were discovered
later on. The used distance coefficients or transition
costs were 5,7 for 2D images and 7,10,12 for 3D
images. Table 1 gives the data of a typical
simulation.Table 2 gives the processing times of the
path finding machine, using no heuristics, no a
postiori pruning and bi-directional search.

The software version (in C) of the algorithm using
image e, ran in 23s on a 68000,12Mhz machine.
The Path Finding Machine takes 0.01 sec for this
image. A speed up of 2300.

Conclusions
Robot path planning in a quantized configuration

space offers prospects for real-time applications. It
has been shown that a path in a 323configuration
space can be found in less than 15 ms with 16 PEs,
if the matrix of prohibited and permitted transitions is
known. Future research will focus on algorithms and
architectures for establishing the transition
possibilities. Possible other application areas like
VLSl routing and Al techniques will be investigated
to generalize the approach.

IAPR Workshop on CV -Special Hardware ar id Industrial Applications OCT.12-14. 1988. Tokyo

The hardware will be implemented in CMOS
VLSl technique and be applied in the Delft Intelli-
gent Assembly Cell.

Table 1. Typical simulation output for the PFM: For a
1,2 and 8 PE system, the number of cycles, the FIFO
depth, the number of nodes in 'open', the number of
nodes after checking, the idle- and blocked cycles of

Acknowledaement
This research was supported by the Dutch

Government as a part of the SPIN-FLAIR-DIAC
project.

References

(1) T. Lozano-Perez, "Robot programmingn, in Al in the
1980's and w, W.E.L. Grimson and R.S. Patil, ed.,
MIT Press, 1987.

(2) K.S. Fu, R.C. Gonzalez and C.S.G. Lee, Robotics. . . .
Control., MacGraw-Hill,
1987.

(3) T. Lozano-Perez, "Spatial Planning: A Configuration
Space Approach", E E E . I r a n s . r , vol. C-32. No. 2,
Feb. 1983.

(4) W. Gilles, A universal co- for t h e
f a collision 7

graduation thesis, Delft University of Technology, Faculty
of Mechanical Engineering, The Netherlands, 1984.

(5) C.J. Lee, An algorithm for path connections and its
applications", JEFF Trans. on Flec C w . , pp 346-365,
Sep. 1961.

(6) W.E. Howden, *The Sofa Problem". CornDut., vol. 11,
pp. 299-301, NOV. 1968.

(7) P.W. Verbeek, L. Dorst, B.J.H. Verwer and F.C.A. Groen,
"Collision avoidance and path finding through constrained
distance transformation in robot state space", in

, Amsterdam, Dec. 8-
11,1986.

(8) G. Borgefors, "Distance transformations in digital images",

pp. 344-371, 1986.
(9) K.G. Shin and N.D. McKay, "Selection of near-minimum

time geometric paths for robotic manipulators",
on AUtpmat~c Contra, vol. AC-31, no. 6, pp. 501-

51 1, June 1986.
(10) B.J.H. Verwer, "Heuristic search in robot configuration

space using variable metric", NASA Conference
Publication 2492, presented at the 3rd. on A- . . .

. .
e for v, Nov. 2-3, Huntsville,

Alabama, 1987.
(11) M. Yamashita and T. Ibaraki, "Distances defined by

neighborhood sequences", R e c o w , vol. 19,
no. 3, pp 237-246, 1986.

(12) S.T. Dekker, ' lgward a har-e for LpbPt . . v, graduation thesis, Delft Univ. of
Technology, 1987.

(13) B.J.H. Verwer, P.W. Verbeek and S.T. Dekker, "An
efficient uniform cost algorithm applied to distance
transforms", to appear in JFFF T m . on P p

(14) P.E. Hart, N.J. Nilson and B. Raphael, "A formal basis for
the heuristic determination of minimum cost paths", lEEE
Trans,, vol. SSC-4,
no.2, pp. 100-107, 1968.

(15) J.Pearl, Heunstlcs, Addison Wesley, 1985.. ISBN 0-201-
05594-5.

(16) A. Aho. J. Hopcroft and J. Ullman,
of, Addison Wesley, 1974.

(17) Robot Path Planning by Heuristic Search, B.J.H.Verwer.
S.T.Dekker. P.P.Jonker. F.C.A.Groen, accepted for the
1 21h EMACS World . . .
PARIS, july 18-22, 1988.

(18) J.R.Gurd, C.C.Kirkham, I.Watson. The manchester
prototype dataflow computer, Communlcatlons of t k . .

KiL vol28-1, Januari 1985, pp34-52.
(19) M. lwashita et al., A data driven VLSl image processor

(IMPP). In: I. Uhr, K. Preston, S. Levialdi, M.B.J. Duff
of M- for Lmage Processing.

Academic Press Inc., Orlando Florida USA, 1986.

