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Abstract 

Robot paths can be planned in quantized 
configuration spaces. Each configuration represents 
an unique location of the robot. If a matrix of 
prohibited and permitted transitions is available, 
paths can be found in the configuration space by 
heuristic search algorithms. We have studied algo- 
rithms and architectures for finding these paths. 

We propose a hardware architecture that uses an 
implementation of the A*-algorithm; a uniform cost 
search algorithm. Simulations have shown that in a 
three dimensional quantized configuration space of 
323 a path can be found in less than 15 ms if 16 
processing elements are employed. 

The problem definition of robot path planning is': 
"Given a moving object, (A), a set of stationary 
objects, (Bi), at known positions, a legal initial 
position of A, s, and a legal goal position of A, g, find 
a sequence of motions that take A from s to g ,with- 
out colliding with any of the Bi." Note that this 
definition does not include planning of servo actions 
that minimize the travel time along or close to a 
predefined path, nor does it include grasp planning 
or fine motion planning (compliant motions); actions 
which 'collisions' in the above mentioned 
sense. 

Collision avoidance is an extension of the path 
planning problem. An uncertain environment with 
moving obstacles is assumed. 

In this paper a free space method* based on 
quantized configuration spaces3 is used. A 
configuration space is a space in which each point 
represents a unique position of a robot in the real 
world. Each adjacent pair of points in configuration 
space receives a label, prohibited or permitted, de- 
pendent on whether or not a movement of the robot 
between those points would result in a collision. 
However, the transformation of a given robot, (A), 
and a given set of obstacles, (Bi), into a map of 
prohibited and permitted transitions is not the 
subject of this paper. Adjacent points in 
configuration space are points which coordinates do 
not differ more than 1 in each dimension. The metric 
in the configuration space can be chosen to 
approximate the euclidean distance.8 Good integer 
approximations of the euclidean distance can be 
derived,'*.l3. E.g. for two dimensions, the horizontal 
and vertical transition costs 5 and the diagonal 
transition costs 7 lead to a maximum relative error of 
4.21 % after scaling with 5.71. 

Verwerlo proposed to use a standard heuristic 
search method in the configuration space: the A'- 
algorithm.14115 We will present here a possible 
hardware architecture for an implementation of this 
search algorithm used in quantized configuration 
spaces, usable for real time robot path finding. 

The A*-alaorithq 

The robot path finding problem naturally falls into 
the class of graph search problems. The nodes of 
the graph are points in the N-dimensional 
configuration space. All nodes are locally 
connected, except for obstacle points, which are not 
connected at all (see figure 1). 

Heuristics information is incorporated by an 
evaluation function f, which is the sum of two 
functions g and h. In graph terminology, g(n) repre- 
sents the costs from the start node s to node n and 
h(n) represents an estimate of the costs from node n 
to the goal node g. A* is guaranteed to find the 
cheapest path if h(n), the heuristic function, is 
chosen optimistically. 

If h(n) is assigned the value zero, the A*- 
algorithm degenerates into a uniform cost algorithm. 
In that case waves of equal cost are propagated 
from the start node in all directions, until the goal 
node is reached. If h(n) is increased to the maximum 
still optimistic value d of the costs from node n to the 
goal node g, the algorithm first expands nodes in 
the direction of the goal node and later, when 
obstacles are encountered, nodes in other 
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directions. We found that the applicabillry o f  performance, relative to the case were only 
heuristic information therefore decreased with the heuristic information is used. 
complexity of the search space. When using directional information, a priori 

The A'-algorithm can be described in 4 steps, pruning of the search graph is possible. The savings 
see figure 1 : consist of a reduction in the mean number of 

1) Mark the start node s 'open' and calculate an successors. Normally, nodes are opened many 
evaluation function f(s). times before they receive the label 'closed'. If 

2) Select the open node n whose f value is directional information is used this inefficiency 
smallest. If ties occur, resolve in favour of a diminishes. All nodes adjacent to a generating node 
goal node. that can be reached via a cheaper path from the 

3) If n is a goal node, mark n 'closed' and node which generated the generating node (see 
terminate the algorithm. figure 2) are not considered as successors. Of 

4) Othewise, mark node n 'closed', calculate f course One has to check if the cheaper path is not 
for each successor node of n and mark 'open' prohibited. 
each successor node not already marked 
'closed'. Remark as 'open' any closed node ni 
which is a successor of n for which f(ni) is 
smaller now than it was when ni was marked 
'closed'. Goto step 2. 

Feasibilitv of A'- im~lementation~ 

The calculation most intensive part of the A*- 
algorithm is the selection of the node with the lowest 
f value. A sorting algorithm is required here. Bucket 
sort is the most efficient sorting algorithm, linear in 
the number of nodes to be s0rted.13~16 It can be 
used with bounded, integer valued transition costs. 
The 'open' nodes are stored in buckets. Each 
buckets has an f value associated with it; nodes with 
equal f values are stored in the same bucket. The 
buckets are processed one by one, starting with the 
bucket with the lowest f value associated with it (in 
which the start node s is stored).Processing a 
bucket consists of retrieving each node stored in it 
and generating successors for each retrieved node. 
Successors are adjacent nodes which are not yet 
labelled 'closed'. The f value of the successors is 
calculated, after which they are stored in the ap- 
propriate buckets. A node for which all successors 
have been generated is labelled 'closed'. Because 
the maximum difference in f values of generated 
successors is twice the maximum transition cost, a 
Jimited number of buckets suffices. 

To obtain a feasible hardware architecture, 
several implementations of A* have been com- 
pared, both theoretically and in simulations. 
Simulations were performed both on functional level 
as well as on register transfer level. Four 2-D (size: 
2562) and four 3-D (size: 323) test images were 
used. In the 2-D as well as in the 3-D case the test 
images consisted of an empty image, an image with 
a few rectangular constraints, a more complicated 
constraint image and finally, a maze. The 2-D 
images are referred to as a,b,c&d; the 3-D images 
as e,f,g&h. The evaluations and results are reported 
in 17 and are summarized below: 

Both searching from start and goal node 
simultaneously with using heuristic information 
decreases the total number of nodes expanded. In 
the case of using heuristic information (with h(n) the 
'as the crow flies' distance to the goal) the savings 
are highest for simple images. The same applies in 
the case of employing a bi-directional search. Most 
important however is that the mechanisms impede 
each other. Employing a bi-directional search if 
heuristic information is used degrades the 

Simulations showed that this method (DIR) yields 
a 50% reduction in the 2D and 3D test images, but 
savings diminish in higher dimensions. An adjusted 
method (SDIR) which allows only smooth direction 
changes (1,7 & 8 in figure 2) exhibit increasing 
savings in higher dimensions but might miss the 
solution path if the constraint image contains 1 pixel 
thick passages. 

A postiori pruning of the search graph is also 
possible if only the successor that is 'better' (in 
terms of 'best evaluation value so far') than the 
previously generated successor to the same node 
will be inserted in 'open'. 

Hardware 

Due to the evaluation of the functional 
simulations it was decided to focus on an 
architecture for the A' algorithm using bi-directional 
search, a priori pruning methods DIR or SDIR, a 
postiori successor pruning and (optional) heuristics. 

An obvious source of parallelism in the A* 
algorithm is the wave front of equal cost that has to 
be expanded. It was decided that the path finding 
mach~ne (PFM) should consist of identical 
processing elements (PEs), in which each PE 
handles a number of 'open' nodes. Moreover, the 
PEs should only have access to a mutually disjoint 
subset of the large data structures. We will elaborate 
on this later. Each PE can access the data on only a 
subset of the nodes in the search graph. 
Communication between the PEs remains 
necessary to exchange successor nodes. Figure 3 
shows the architecture of the PFM consisting of a 
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number of PEs, a data switch network and a 
single global controller. 

To improve the performance for systems with a 
large number of PEs, the 'S' element can be used to 
connect different rings together. A candidate 
interconnecting structure is a hypercube, see figure 
5. An N-dimensional cube can be constructed by 
inserting N 'S' elements in the ring. E.g. a 256-PE 

The global controller synchronizes the PEs path finding engine could consist of 64 rings of 4 
and might be implemented on a conventional PE's, where each 4-PE ring has 6 'S' elements to 
sequential processor. The input and outputs of a PE connect it with other rings. 
are reset, increment-f, bucket-empty , ready and 
nearly-full. During the actual search process, the 
global controller has only a passive job, which can 
even be implemented with some logic. If. reset is 
asserted all PEs clear their current evaluation value 
f. After reset, each PE starts to process the nodes in 
the bucket indicated by their local f value. When a 
PE is ready with this bucket it asserts the 
bucket-empty signal. The PEs may however 
proceed with the next buckets, (f+l), (f+2), ... until 
the bucket number exceeds f+d; d being the minimal 
transition cost (e.g. 5). Note that proceeding is 
allowed since buckets with index f generate 
successors with an evaluation value of at least f+d. 
The global controller waits until all PEs assert the 
bucket-empty signal. At that moment, increment-f is 
asserted and all PEs are enabled to proceed. If 
some PE detects the end condition, it sends the 
ready signal to the global controller, which then 
terminates the search. The global controller's active 
tasks are initialization and finding the final solution 
path. 

The data switch network transfers successor 
node data between PEs and can be implemented 
for a modest number of PEs with a synchronous 
data bus. 

If the PFM consists of more than a modest 
number of PEs the switch is more difficult to 
implement and will become the engines bottle-neck. 
A variant of the token ring approach as used in the 
Manchester data flow systemla and the lMage 
Pipeline Processor from NEC 19 can be used. Since 
the Successor nodes (the tokens) have a fixed A draw back of the distributed computing 
structure, and a delay between sending a node and architecture is that parallelism cannot be forced; we 
receiving this node does not matter, this approach is must h o ~ e  !hat the nodes in the buckets are 
applicable. PEs are connected in a local ring, see distributed uniformly over the PEs. The dlstrlbutlon 
figure 4. The elements labeled 'S' are token of the nodes of the search graph (the wave front) 
switches. If a token on the global ring enters such a over the PE'S is a fixed, fine grained, spatial 
token switch, it is checked whether an address field distribution, and is implicitly executed by the 
in the token matches the address of the Current PE. coordinate mapping function. This function assigns 
If SO, the token enters the PE; if not the token is Sent a p~ number to a coordinate. was decided to use 
to the next 'S' element. Tokens in the global ring a simple mapping function based on the binary 
have a higher priority than tokens produced by the representation of the coordinates: The least 
PEs. significant bits of the coordinates are used as PE 

address. Simulations showed that the total number 
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of input nodes in 'open' was divided a lmost  
uniformly over the PEs, with as notable exception 
one of the 8 test images; a generated 3D maze, 
which was too regular to achieve an even 
distribution. 

Figure 6 shows the architecture of a processing 
element. Each PE is a synchronous pipeline that 
handles, enabled by the global controller, a number 
of open nodes. Each clock cycle every PE 
generates a successor node, which is either stored 
in its own input FlFO or over the network in the FlFO 
of another PE. 

Figure 6. The architecture of a Processing Element. 

The PE consist of a number of pipelined 
functional units, each with memory for data and 
parameters. The individual tasks of those units are 
listed below: 

INPUT-FIFO 
On the average, the OPEN manager processes 
input nodes at the same speed as the successor 
generator creates them. However, the momentary 
node rate can be higher, since at times successors 
from different PEs can all be sent to the same PE. 
The FlFO generates the nearly -full signal, which 
can be used to temporarily hold the successor 
generators of other PEs. 

PRUNING-UNIT 
Uses a 'best evaluation array' or 'distance image', 
which keeps for every node coordinate the best 
evaluation value so far. Only nodes that are 'better' 
than the best evaluation value so far may pass. The 
array can also be used as traverse1 tree by the 
global controller to find the final solution path. 

OPEN manager 
The administrator of the local 'open' data structure, 
organized in buckets. Incoming nodes are stored in 
the bucket indicated by its f value. Out comming 
nodes are retrieved from bucket {fxl(fsfZ<f+d)). The 
buckecempty signal is generated by this block. 

CHECKING unit 
The unit interacts firstly with the CLOSED array. It 
checks whether the input node is an element of 
'closed'. If the node was an element of 'closed', it is 

discarded. If not, it checks whether the end condition 
is met. Then the ready signal is asserted. If not, it is 
checked whether the node is an element of the 
CONSTRAINT image; then it is discarded. 
Optionally it has an interface with some external 
constraint checking hardware (e.g. for moving 
objects). 

SUCCESSOR generator 
This unit actually expands a node. The full 
coordinate must be restored in this unit from the 
local coordinate and the PE number. Depending on 
a direction field of the node, successors can be 
generated from a table, which can be filled with DIR- 
or SDlR types of successors. The new evaluation 
value is generated for each successor. Optionally a 
cost index storage can be connected containing a 
cost index for each local node coordinate. (To allow 
space dependency of costs; e.g. transitions near 
objects can be given higher costs.) The successor 
generator has a heuristic unit to calculate the 
heuristic function h. 

For the register transfer simulation of the PFM, each 
of the units was further refined and the following 
assumptions were made: 
All units of the PE are separated with pipeline 
registers and a two phase clock is used: 
(01  ;compute and 02;transier). All units can be 
constructed in such a way that the processing time 
needed for a for a compute step is twice the cycle 
time of the DRAMS used for the tables. Hence a 
realistic cycle time is 400ns. All units take one 
elementary cycle, except for the successor 
generator which takes one cycle per generated 
successor. If a heuristic function is used, two cycles 
per successor are necessary. 
The simulations have been run for 8 test images 
{a ... h} using all combinations of unidirectional / bi- 
directional search, pruning / no pruning and 
heuristics / no heuristics . A priori pruning was not 
applied, since the benefits of this were discovered 
later on. The used distance coefficients or transition 
costs were 5,7 for 2D images and 7,10,12 for 3D 
images. Table 1 gives the data of a typical  
simulation.Table 2 gives the processing times of the 
path finding machine, using no heuristics, no a 
postiori pruning and bi-directional search. 

The software version (in C) of the algorithm using 
image e, ran in 23s on a 68000,12Mhz machine. 
The Path Finding Machine takes 0.01 sec for this 
image. A speed up of 2300. 

Conclusions 
Robot path planning in a quantized configuration 

space offers prospects for real-time applications. It 
has been shown that a path in a 323configuration 
space can be found in less than 15 ms with 16 PEs, 
if the matrix of prohibited and permitted transitions is 
known. Future research will focus on algorithms and 
architectures for establishing the transition 
possibilities. Possible other application areas like 
VLSl routing and Al techniques will be investigated 
to generalize the approach. 
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The hardware will be implemented in CMOS 
VLSl technique and be applied in the Delft Intelli- 
gent Assembly Cell. 

Table 1. Typical simulation output for the PFM: For a 
1,2 and 8 PE system, the number of cycles, the FIFO 
depth, the number of nodes in 'open', the number of 
nodes after checking, the idle- and blocked cycles of 
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