
IAPR Workshop on CV - Spedal Hardware and Industrial Applications OCT.12-14, 1988, Tokyo 

MOTION ESTIMATION FOR VIDEO BANDWIDTH COMPRESSION USING 
A HETEROGENEOUS PYRAMID IMAGE PROCESSING ARCHITECTURE 

G. R. Nudd, S.  C .  Clippingdale, R. M .  Howarth, T .  J .  Atherton, 
N. D.  Francis, G .  J .  Vaudin, D. W. Walton 

Dept. of Computer Science, University of Warwick, Coventry CV4 7AL, U.K. 

ABSTRACT 

In many image processing contexts there is a requirement 
for some form of motion estimation. A number of stra- 
tegies exist, differing in the accuracy and granularity of 
the motion estimate and in their computational require- 
ments. The simplest and most coarse-grained scheme is 
'block' motion estimation, where the current frame is 
divided into blocks of pixels and for each block an esti- 
mate of its most likely motion is computed by reference to 
a neighbourhood in the previous frame. Such coarse 
motion estimates are of utility in situations where a fairly 
approximate but fast trajectory estimate is required. 
Examples are motion-compensated interframe predictive 
coders and various aerospace applications. The block 
motion estimator is simple and amenable to parallel com- 
putation, making it feasible for implementation at real- 
time frame rates. This paper describes the mapping of the 
block motion estimator on to the lower levels of the 
Wamick Pyramid Machine (WPM), a heterogeneous 
pyramid architecture for parallel image processing I 
understanding which is currently under development at 
the University of Warwick. The paper describes how the 
required computations are performed and presents simu- 
lated timings. The advantages of the multi-SIMD archi- 
tecture of the WPM are illustrated. 

INTRODUCTION 

Motion is a fundamental property of time-varying 
imagery and indeed is usually responsible for those vari- 
ations with time which are of interest to the end-user. It 
is natural, therefore, that in systems which process such 
imagery there is frequently a-requirement for some kind 
of motion detection and estimation. Examples include 
systems for object tracking and identification, robot 
navigation, and motion compensation for interframe 
predictive coding. The motion estimation strategy 
chosen depends on the requirements of the particular 
application. For example, a system which aims to track 
a number of moving targets with complex motions may 
require an accurate motion estimate at every point in the 
scene, whereas interframe predictive coders are not as 
demanding, since the predictor is usually situated in the 
feedback loop at the coder and decoder, and a coarse- 
grained approximation to the image motion over blocks 
of pixels is usually adequate. 

The most general, accurate and computationally 
expensive methods involve the calculation, at each pixel 
in a sequence of frames, of the opticalflow vector field [I]. 

Such schemes may be designed in the spatiotemporal or 
spatiotemporal-frequency domains [2], and tend to use 
large amounts of three-dimensional filtering. There are 
no constraints for example on the number of moving 
objects or textures in the scene or on the permissible 
types of motion, nor is the background constrained to be 
stationary. Applications include aerial target tracking 
and sophisticated vision systems, and energy detection 
in the spatiotemporal-frequency domain has been postu- 
lated [3] as a mechanism for motion estimation in bio- 
logical (e.g. human) vision. 

Somewhat more limited in terms of permissible types of 
object and motion are the feature correspondence 
methods. These work by extracting particular features 
such as line segments or comers from each of two 
frames in the image sequence. Corresponding features 
are paired and motions sought which are consistent with 
the translations and rotations measured between the 
members of each feature pair (e.g. [4]). Data which is 
not representative of the predetermined feature types 
will be missed or may even produce erroneous results. 
Such constrained methods are useful in situations where 
there is a priori knowledge of the type of data involved, 
for example in systems for automatic registration of 
components in manufacturing where it might be known 
that there is only one object, with geomemc characteris- 
tics such as comers, moving against a stationary back- 
ground. In more general contexts these methods may be 
confused by 'unexpected' data; the computational bur- 
den is heavily data-dependent and may increase rapidly 
with the number of detected features. 

The simplest motion estimation strategy, known as 
block motion estimation, divides the current frame from 
the image sequence into blocks of pixels and for each 
block attempts to locate the most likely translational 
motion within a search window from the previous 
frame. The method is relatively crude by comparison 
with optical flow and feature correspondence methods 
and produces a somewhat coarse-grained estimate as its 
output. However, it offers a simplicity of computation 
which renders feasible its implementation at real-time 
frame rates on a suitable processor. The accuracy of the 
estimate is sufficient to give a reasonable first approxi- 
mation to object motions. This method is suitable for 
motion estimation in motion-compensated interframe 
predictive coders which, as noted above, do not require 
very fine-grained or accurate motion information and 
are often compelled to operate at real-time data rates. 



lAPR Workshop on CV - Special Hardware and industrial Applications OCT.12-14. 1988. Tokyo 

After presenting an outline of the block motion estima- 
tion scheme, this paper will describe its implementation 
on the Warwick Pyramid Machine (WPM), a Multiple 
Single-Instruction-Multiple-Data (M-SIMD) hetero- 
geneous pyramidal image processing architecture (figure 
1). 

Host Machlne 
Sun rdsutim 

Symbolic Recessing Layer 
8x8 MIMD mnrptcr machina 

Intermediate Praessing Layer 
32x32 MIMD procaron, cmuolling PPEh 

Iconic Layer V 'I 512fin slm ht.-.I .-&.ti~~ P r n  1 
Figure I 

The Wanvick Pyramid Machine 

The machine is designed for the extraction of high-level, 
symbolic representations from iconic data and operates 
in a highly parallel manner at each of its levels. The 
block motion estimator, which is essentially a low-level 
or iconic process, maps on to the bottom two levels of 
the machine. Simulated timings for the computation of 
the motion estimate will be presented and shown to be 
compatible with real-time speed requirements. The 
advantages of the M-SIMD architecture will be dis- 
cussed. 

BLOCK MOTION ESTIMATION 

The block motion estimator divides the current frame 

curenr block / 
 displace^ by ( i , j ) 

' 

search window current block 
(M + 2 ~ )  x (M + ZD)\ / M x M  

Figure 2 
Search Window and Current Block 

,______._______________ 

MAE I;: I MAE :;/ , 

-D S i , j  S D  , (2) 

___.._. 

is retained as the best estimate for the motion of the 
current block (I ,  J )  . Should more than one displace- 
ment ( i ,  j) yield the minimum value of MAE, the 
motions of the surrounding blocks are examined and 
that value of displacement which is most consistent with 
these motions is retained. 

THE WARWICK PYRAMID MACHINE 

into blocks of M x M pixels and seeks the 'best match' The Warwick Machine (WPM) architecture 
for each current block over all displacements within a (see figure 1) consists of three processing layers, known search window in the previous frame of (M + 2D) x (M as iconic, intermediate and symbolic. Each intermediate 
+ 2D) pixels, centered on the current block. The current processor (ILP) controls a clurrer of 16 16 
block and search window are depicted in figure 2. The 

single-pixel pixel processing elements (PPELs) on the 
maximum tested displacement is D pixels in the hor- iconic layer. The PPELs in each cluster operate in 
izontal and vertical directions. A typical and convenient 

broadcast SIMD mode, but the ILPs are independent, 
value for the block size M is M = 8 or M = 16. providing individual local control for each cluster, and 
For each displacement ( i ,  j )  , -D 5 i ,  j I D  within 
the search window, an index of the correspondence 
between the displaced current block and the M x M por- 
tion of the search window under the displaced current 
block is calculated. The index used is mean absolute 
error ( M A E ) ,  which is simply the sum of the absolute 
values of the differences between corresponding pixels 
(with the appropriate displacement) in the two frames, 

ihus the- combination of the lower two levels is a 
multiple-SIMD (M-SIMD) structure. The ILPs com- 
municate with the symbolic (transputer) layer above via 
a dual-port memory and with the PPELs on the iconic 
layer through various associative response mechanisms. 
The relationship between the iconic and intermediate 
levels is depicted in figure 3. Note that for reasons of 
clarity, only those features used in the block motion esti- 
mation are shown. 

The PPELs use bit-serial arithmetic and output serial 
data to the intermediate layer via a flag labelled 'X'. 
Also connected to the output of the X flag is a fast adder 
tree, which gives the ILP a count of the number of 

where the displacement is ( i ,  j )  , the Current block is p p ~ ~ ~  in the ,..luster which have the x flag set, m e  
indexed ( I ,  J )  , and the superscripts N and N-I refer PPEL m y  possesses eight-way connectivity. A much- 
the frame number. The MAE is calculated for all dis- simplified block diagram of a p p ~ ~  element is shown in 
placements ( i ,  j )  , -D 5 i , j 5 D , and that displace- figure 4. 
ment ( u ,  v )  which yields the minimum MAE, 



lAPR Workshop O n  CV - Spedal Hardware and Industrial Applications OCT.12-14, 1988. Tokyo 

To symbolic (transputer) level 

t 

Intermediate 
layer 

X 1 \ 
// \ \ . Fast 

/I \ 
\ 
\ Adder 

- 
/ I  \ 
/I \ ,/TI Iconic layer 

f I 6  x 16 PPEL cluster /I/ 
Figure 3 

ILPIPPEL cluster (simplified) 

To FIIsr Adder 
Md lLP 

Figure 4 
Simplified PPEL Block Diagram 

BLOCK MOTION ESTIMATION ON 
THE WARWICK PYRAMID MACHINE 

The design of the iconic and intermediate layers of the 
WPM facilitates the parallel computation of equation 
(1). Suppose that frames N and N-1 reside in PPEL 
memory, with one pixel from each frame stored in the 
memory of each PPEL. Suppose also that the two 
frames are aligned such that the displacement ( i ,  j) in 
(1) is ( i ,  j )  = ( 0 . 0 ) .  Then the absolute differences 

may be formed in parallel over the entire array by a sub- 
traction at each PPEL followed by an absolute value 
operation. These absolute differences are then available, 
for every current block, for 0 S k < M-1 and 
0 S 1 S M-I. The summation in (1) may be performed 
in parallel over each cluster of 16 x 16 PPELs using the 
fast adder tree, and the resulting MAE value is stored at 

the ILP level. This illustrates the advantage of using a 
blocksize of M = 8 or M = 16, since each ILP handles 
exactly four current blocks for M = 8 or one for M = 16. 
For the case of M = 8, the four sums (MAE values) must 
be formed in sequence using the ILP address mask facil- 
ity [5],[6] to select the appropriate 8 x 8 block of PPELs. 

In order to evaluate (1) at the next value of displacement 
(say ( i , j )  = (0,1)), the previous frame (frame N-1) 
must be shifted by (-i, -j) = (0,-1) relative to the 
current frame. This is achieved by using the eight-way 
neighbour connectivity across the PPEL array - in this 
example, each PPEL reads from the neighbour to its 
east. The value of MAE ,':: is calculated in the same 
fashion as was MAE i:; and is compared with MAE i:; 
for each current block ( I ,  J)  . The lower value is 
retained along with the corresponding displacement 
( i , j ) .  

The process of shifting the previous frame, forming the 
mean absolute error values and retaining only the lowest 
of these together with its corresponding displacement 
continues until all displacements 
( i , j )  , -D < ( i , j )  l D have been covered. (Non- 
minimum MAE values may, if desired, be retained in 
the ILP memory for further processing.) At this stage, 
each ILP contains in memory the optimum displacement 
with its associated MAE vdue for one current block if 
the blocksize is M = 16 or for four current blocks if M = 
8. These motion estimates are now available to subse- 
quent processing such as the predictor stage of an inter- 
frame coder. 

SIMULATION AND TIMINGS 

A simulator for the lower levels of the WPM has been 
developed, in the form of an implementation of the clus- 
ter programming language (CPL) [6]. CPL is a high- 
level language which is used to program the intermedi- 
ate and iconic layers of the WPM. The simulator 
presently runs on a Sun-3, but will soon be ported to the 
8 x 8 transputer array (the symbolic layer) which is now 
operational. The use of bit-serial arithmetic in the PPEL 
ALU means that the processing time is linear with 
respect to the desired intensity (gray-level) resolution. 
Assuming 8-bit data, the subtraction in (1) requires 8 
machine cycles, as does the absolute value operation. 
Formation of the sum requires that, for each bit, the 
PPELs in a cluster write the bit into the X flag, and a 
count of the number of active X flags in the cluster is 
then available to the ILP at the output of the adder tree. 
The process is repeated for the remaining bits in the 
modulus term, with the sum being accumulated at the 
ILP. Each one-bit summation over the cluster requires 
two machine cycles and so for 8-bit data, 16 machine 
cycles are required for the accumulation. For a current 
block size of M = 8, four accumulations must be per- 
formed at each ILP and so 64 cycles are needed. The 
frame shift requires eight cycles, bringing the total count 
to 40 or 88 machine cycles for each displacement ( i ,  j )  
for block sizes of M = 16 or M = 8 respectively. Since 
there are (20 + 112 values of displacement within the . 



IAPR Workshop on CV -Special Hardware and Industrial Applications OCT. 12-14. 1988. Tokyo 

search window, the total load is 

machine cycles for M = 16, or 

for M = 8. This figure excludes the comparison and 
storage of MAE values at the ILP level, since these 
functions may be performed while the PPEL layer is 
shifting the previous frame and computing the MAE for 
the next displacement. For a typical search window size 
of 15 x 15 pixels (D = 7) and M = 16, the total load is L 
= 9000 cycles, which with a IOOns cycle time requires 
0.9ms, or approximately five percent of the total avail- 
able interframe processing time for a 50Hz frame rate. 
The variation of processing time with search window 
size (in terms of the maximum displacement D) is illus- 
trated in Table 1 below. The percentage of the frame 
interval required at a 50Hz frame rate is displayed as 
PFT . 

Tabb 1 
Processing times 

ADVANTAGES OF THE 
M-SIMD ARCHITECTURE 

PFT 
M = 1 6  M = 8  
1 .O% 2.2% 
2.4% 5.3% 
4.5% 9.9% 
8.8% 19.4% 
19.2% 42.3% 

D 

3 
5 
7 
10 
15 

The block motion estimator as described above could 

Time 
M = 1 6  M = 8  
0.20ms 0.43ms 
0.48ms 1.06ms 
0.90ms 1.98ms 
1.76ms 3.88ms 
3.84ms 8.46ms 

not be implemented easily on a pure SIMD architecture, 
since the formation of the MAE values requires that pro- 
cessing is compartmentalised within the blocks defined 
in the image. A 'hybrid SIMD' architecture consisting 
of two SIMD layers of the appropriate granularities (one 
processor per current block on the upper layer and one 
per pixel on the lower) would suffice. However, the M- 
SIMD approach is superior where different types of 
processing may be required in different regions of the 
image (e.g. in different current blocks in the present 
application). If for some current block there are two 
'candidate' displacements which yield the lowest MAE, 
for example, the ILP which maps on to that block may 
request information concerning the motion estimates for 
the surrounding blocks from the neighbouring ILPs in 
an attempt to select the most likely single motion from 
the candidates. On the other hand, if the MAE for any 
displacement (most likely ( 0  ,O)) were below some low 
threshold, the search on the particular current block 
could be aborted and the displacement taken immedi- 
ately as the final value, possibly saving some time in 
subsequent computations. The ILP(s) in question could 

be assigned a useful task such as encoding while the rest 
of the array completes the motion estimation. Similarly, 
the M-SIMD architecture allows those ILPs which are 
situated at the edges of the array to handle edge effects 
by running code which differs from that used to program 
the interior ILPs. 

In the case where a number of objects move indepen- 
dently in the scene, their motions per se may indicate 
that different processing will subsequently be required. 
For example, in aerospace applications a fast-moving 
object may call for immediate further processing with 
all of the requisite machine resources in order to ascer- 
tain whether it poses a threat or indicates a dangerous 
condition. Alternatively, in coding applications it may 
be advantageous for neighbouring current blocks with 
similar motion estimates to be merged and considered as 
one. The same is true for initial segmentations using 
motion as a basis. In this case, the nature of subsequent 
computation might depend on the class to which the 
current block is assigned. The spatial adaptivity offered 
by the M-SIMD approach thus has benefits both for the 
motion estimation itself and for subequent processing. 

ACKNOWLEDGMENTS 

This work is supported by the UK DTVSERC Alvey program and 
by the US SDIO Innovative Science & Technology Office under 
contract N00014-87-G-0241 administered by Dr. K. Bromley, 
Office of Naval Research. 

REFERENCES 

[I] B.K.P.Hom, B.G.Schunk, Defermining Optical Flow, Art. 
Intell. 17, 185-203, 1981 

[2] A.B.Wa&on, AJ.Ahurnada, Jr.. A Look ar Motion in rhe Fre- 
quency Domain. NASA Tech. Memo. TM-84352, 1983 

[3] E.H. Adelson, J.R. Bergen, Spatiotemporal Energy Models 
for rhe Perception of Motion. J .  Opt. Soc. Am. A 2,284-99, 
1985 

[4] H.H. Chen, T.S. Huang, An Algorithm for Matching 2 - 0  Line 
Segmenls With Application to Multiple-Objecr Motion Esli- 
m t i o n ,  Proc. IEEE Workshop on Cornp. Vision, 1987 

[5] G.R.Nudd, R.M.Howarth. TJ.Atherton, N.D.Francis. 
G.J.Vaudin, D.W.Walton. A Heterogeneous Archireclure for 
Parallel lmoge Processing. Proc. IED Conf. Information 
Technology, Swansea, 1988 

161 R.M.Howarth, N.D.Francis. Cluster Programming Language: 
Definition and User Manual. Research Report RR125, Dept. 
of Computer Science. University of Wanvick, July 1988 


