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ABSTRACT 

The problems encountered in low-level processing of 
images, in which the output is another image, have mostly 
been solved, in that a good selection of algorithms exist 
and processors have been optimised to implement them. 
The situation is far less well understood at the next level 
of processing, where neither algorithms nor architectures 
have been optimised. In this paper, the general nature of 
intermediate-level processing is explored and guidelines 
discussed to aid the design of efficient processors. 

INTRODUCTION 

Image processing is a loosely defined concept and can 
mean different things to different people. In this paper, 
image processing is taken to comprise all those operations 
on images and on data derived from images that are 
necessary in order to interpret, enhance or restore images. 
Again, for the purposes of this paper, images are digitised 
optical images, usually on a square grid, such that all the 
relevant information in the image can be represented by 
an N by N array of binary numbers, each with B bits, 
where N ranges typically between 32 and 1024 and B 
between 1 and 8 (more for colour images). Image pro- 
cessing operations divide conveniently into three classes: 
low-level, intermediate-level and high-level [I]. This 
partitioning is convenient since it is both conceptually 
meaningful and technically significant. The low-level 
processing is concerned with taking in image data as an N 
by N array of pixels, abstracting information from the 
data (usually local information in the sense that each part 
of the abstracted data is derived from a group of pixels 
which are all close to each other) and outputting the result 
in the form of another N by N array of pixels. In the out- 
put array, each pixel has a value which is a measure of a 
local image property, such as edge strength, edge direc- 
tion, texture type, and so on. The data can be described 
as still being in an iconic form. 

It therefore follows that intermediate-level processing 
must take in iconic data but the output data is definitely 
non-iconic, i.e. it is symbolic. The data may take the 
form of.lists, graphs, histograms or even two-dimensional 
arrays which are not N by N (that is to say, not the same 
size as the original image). Data elements can no longer 
have the same geometrical or topological relationships to 

the image pixels and, in fact, individual data points may 
represent information derived from pixels which are 
widely separated in the iconic representations. 

The last stage, high-level processing, involves seman- 
tic analysis. The symbolic data is interpreted and 
meaning extracted from the data. This stage must be 
prepared to deal efficiently with input data in a variety of 
formats and will usually also be expected to interact with 
a knowledge database. Its output may require a good 
human interface or, perhaps, may involve controlling a 
mechanical device. It is the level on which the demands 
are least well defined and it must therefore be the most 
flexible. 

This classification scheme can obviously be criticised 
for being over-simplified but it does provide a useful 
framework for discussing the desirable characteristics of 
image processor architectures optimised for certain types 
of processing. A more complete scheme would address 
the question of classifying systems which pass data and 
control in both directions through the three levels so that, 
for example, partial interpretation of the image can be 
used to control the course of the low-level feature extrac- 
tion. Again, the scheme does not deal well with systems 
which use knowledge to aid image transformation. 
Nevertheless, dividing the total processing into the three 
broad stages covers the main aspects of the majority of 
systems which have been proposed and is therefore a 
good starting point for further analysis and a suitable 
basis for later refinement of the arguments. 

The purpose of this paper is to try to identify the fac- 
tors limiting processor performance and to relate these 
factors to the characteristics of the three levels of process- 
ing. The following sections treat each level in turn. 

Low-Level Processing 

This level, characterised by the phrase 'image in, 
image out', is required to create a new image in which 
each pixel has a value derived from a neighbourhood of 
input pixels centred around the array position of the out- 
put pixel. At its simplest, the neighbourhood is local in 
that the pixels in the neighbourhood are all adjacent to the 
input pixel corresponding exactly to the output pixel. 
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We can write: 

where F represents any function of the grey-levels g of 
the set of pixels in the 3 by 3 neighbourhood centred on 
the selected pixel at (x,y). For more complex operations, 
the neighbourhood may have to be enlarged and, in the 
limit, may embrace the entire input image. Even in this 
extreme case, it is always possible to decompose every 
operation into a finite sequence of local neighbourhood 
operations. Additionally, somewhere in the system, it is 
necessary to incorporate a test which checks for empty 
arrays of (one-bit) data and a counter which counts the 
one-bits in a binary array. Generally speaking, the large 
majority of useful low-level operations are confined to 
small neighbourhoods, presumably because, at the pixel 
level, the relevance of the information in one pixel to that 
in another decreases as the pixels become further apart in 
an image. Thus nearby pixels contribute to edge infor- 
mation in that grey-level gradients are measured by 
differencing adjacent pixel values; furthermore, edge ele- 
ments are formed by clustering neighbouring pixels in 
regions of high density gradient. Arguments of this type 
suggest that, for low-level processing, communication 
between processing elements (PEs) and pixels should be 
facilitated in multiprocessor systems and that good com- 
munication paths should be available between PEs 
assigned to neighbouring pixels. 

This philosophy has been implemented to the full in 
most two-dimensional mesh array processors [2,3,4] in 
which a PE is assigned to each pixel and all PEs connect 
with adjacent PEs in a 3 by 3 local neighbourhood (either 
with 4- or 8- connectivity). Good pixel to PE communi- 
cation is usually only achieved once the data has been 
locally stored in the PEs, mainly because neither optical 
sensors nor framestores have pixel-parallel outputs. 
Alternatively, many systems have been constructed since 
the earliest days of image processing [5 ]  until the present 
day which use a pipeline system to give a single, power- 
ful processor parallel access to 3 by 3 neighbourhoods of 
pixel data; as pixels stream through the pipeline, in 
image raster-scan order, the effect is as if the 3 by 3 
neighbourhood raster-scans though the image, producing 
an output stream of transformed pixels in step with the 
incoming pixel stream. Systems such as these are partic- 
ularly useful when only simple processing is required 
such that the data input and output times are comparable 
with the processing time. 

The essential qualities of the low-level processor 
therefore depend on the requirement that the PEs should 
all efficiently process data from small regions of the 
image and should output into single pixels. The number 
of communication channels is an order of magnitude 
larger than the number of processors (or number of pixels 
in the image). The high degree of parallelism possible at 
this level is intrinsic in the problem at this level, i.e. the 
same operation usually can be performed simultaneously 
on every pixel. In one sense, there is no data reduction at 
this stage of the processing since the output data consists 
of the same number of pixels as the input; in fact, since 

there may be several similar outputs representing image 
properties, including the input data, which will usually be 
retained, it could be argued that there has been a data 
expansion rather than a data reduction. 

Intermediate-Level Processing 

This stage of processing will be required to take in one 
or more N by N arrays of pixel data and then severely to 
reduce the data to either a much smaller array, a list, a 
graph or perhaps to a mixture of different data structures 
which are all in some way descriptive of the image. 
Whilst the input data will still be positionally related to 
the image in that each data point will correspond to an 
image property in the region of that point, the same will 
not be true of the output data which, in general, will carry 
global information about the image. 

It is not difficult to specify the required properties of 
this stage in relation to the input data structure. As in the 
lower level, there is a need to enter every data point into a 
PE in the intermediate level. Since the data will be 
stored in each low-level PE in a two-dimensional array of 
PEs, this communication could be highly parallel; the 
situation is obviously less satisfactory if a pipeline pro- 
cessor has been used for the low-level processing. This 
can be taken to imply that the output data is again stored 
in an image buffer (such as a framestore) which will only 
permit serial access. However, the problem which next 
arises is that the operations to be carried out are likely to 
involve data from much larger areas of the array, perhaps 
clustering edge pixels into whole object edges or explor- 
ing the relative positions of object features (e.g. comers 
or edge intersections). To do this, PEs must now be able 
to communicate freely with more distant PEs and also be 
able to output data in structures which are not necessarily 
matched to the relative positions of the PEs themselves. 

So far, the usual approach to this stage of processing 
has been to assemble PEs along a high-speed bus, which 
then cames all the communication traffic. The bus pro- 
vides a non-parallel 'all-to-all' linkage between PEs 
which is efficient only when the amount of computation 
in each PE is sufficiently large to require computation 
times long compared with inter-PE communication times. 
If this is not the case, then bus contention soon forces an 
increasing fraction of the PEs to stand idle, waiting for 
further data. Alternative schemes, such as a hypercube 
network, eliminate some of the difficulties but will, ulti- 
mately, still prove inadequate when a particular algorithm 
involves large data transfers. 

Fundamentally, the major obstacle to optimisation at 
this level of processing is that the science of image 
analysis has not yet advanced to the point where the rela- 
tive frequency of occurrence of all the various algorithms 
which have been developed is known; indeed, it can be 
hoped that there are many valuable algorithms yet to be 
discovered. This is in contrast to low-level processing 
which is both more highly developed and theoretically 
better founded and is consequently susceptible to efficient 
matching with processor architectures. 
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The high-level processor in this threefold system must 
almost certainly be a general purpose computer, although 
future studies may suggest the use of architectures speci- 
alised for reasoning and running A1 languages such as 
Prolog or perhaps processors for interrogating databases. 
At the present state-of-the-art, it is far from clear what is 
required and no worthwhile specialisation has been 
justified. Whilst researchers are still in this state of 
uncertainty, it is clear that the best policy is to aim at 
maximum flexibility and programmability, placing the 
need for a good user interface above that of obtaining 
high performance. 

T H E  MIDDLE LAYER 

Since the characteristics of the low-level architecture 
are reasonably well defined (offering a choice between at 
least two acceptable alternatives) and the high-level pro- 
cessor is almost certainly required to be a general purpose 
computer, attention can be focussed on the intermediate 
level. Ideally, the best approach would be to consider the 
most commonly used algorithms, analysing their compu- 
tational and data communication requirements so that an 
appropriate configuration of PEs might be proposed. 
This configuration could then be benchmarked against the 
algorithms used in the analysis and against a weighted 
mix of these together with the less common algorithms. 
Unfortunately, as was stated above, the information 
needed to cany out this exercise is not available, except 
in very broad terms. In the absence of precise informa- 
tion, there is some justification for using methods which 
are non-rigorous in an attempt to find a workable solution. 

The starting points for the discussion are the assump- 
tions that the low-level layer will comprise N by N PEs 
and the high-level layer one PE only. With these 
assumptions, the first question to be answered is: how 
many PEs should be used to form the intermediate-level 
layer? The connections to the layer and within the layer 
are a separate issue which will be considered later 
(although the optimum connection strategy would obvi- 
ously depend on the number of PEs employed and could 
affect that number if cost constraints are to be taken into 
account). In the interest of efficiency, it will be assumed 
that the number of PEs will be the minimum necessary to 
give the highest available performance. It is worth not- 
ing at this point that adding further PEs can reduce 
overall performance in that communication to or from 
idle PEs in part of a system will, as it were, 'distract' the 
working PEs and thus reduce their capacity for useful 
work. A less anthropomorphic description of this effect 
would be to point to the communication bandwidth limi- 
tation present in all practicable systems and to note that 
even idle PEs (i.e. PEs into which no part of a decom- 
posed problem can be directed) will usually be polling 
other PEs in an attempt to find tasks to perform. It is 
proposed to examine the hypothesis that the optimum 
number of PEs in the intermediate-level layer is the 
geometric mean of the numbers on either side of the 
layer, i.e. N. 

SUPPORTING ARGUMENTS FOR T H E  
GEOMETRIC MEAN HYPOTHESIS 

None of the following arguments is to be seen as 
conclusive in itself but rather as a contribution to a body 
of evidence pointing to the same general conclusion. A 
critic of this approach might reasonably say that five 
spurious pieces of information cannot add up to one 
indisputable fact. In reply, it could be said that there 
would seem to be no reason to claim that the arguments 
presented are wrong; they are merely weak. They 
should, perhaps, be taken as a challenge to the reader to 
find more conclusive evidence, either one way or the 
other. 

Mathematical Sequence 

In the absence of a well defined role for the 
intermediate-level processor, insofar as the range of algo- 
rithms to be considered is large in number and diverse in 
type, and assuming that general considerations can be 
taken to imply that the optimum number of PEs will lie 
somewhere between @ and 1, then it seems likely that 
the number sequence: @, M, 1 (where M is the number 
of PEs we are trying to determine) will be one which 
occurs elsewhere in physical systems. Typical candi- 
dates would be (@ + 1)/2 (the average), N (the geometric 
mean), or, again, N (the value to which N2 would decay 
exponentially in half the time it would take to decay to 1). 
Thus choosing M to be N is in accordance with two of 
these examples. 

Impedance Matching 

In a three-stage system in which the output impedance 
of the first stage is Z, and the input impedance of the third 
stage is Z3, if it is required to link the two stages by 
means of a middle stage whose input and output 
impedances are both Z2, then choosing Z2 to be the 
geometric mean of Z ,  and Z3 maximises the power 
delivered into the output. Can this concept of optimal 
matching be extended to the information flow in a three- 
layer information processing system? 

Communication of Data 

If for reasons of bandwidth limitation or because of the 
processing capability of a PE, each PE can deal with a 
maximum of K inputs from the layer below, then the sin- 
gle PE in the top layer will expect to receive data from K 
PEs in the intermediate level. Similarly, each of these 
will serve K PEs in the lowest level, from which it can be 
deduced that K is equal to N. 

Reduction of Parallelism 

As has been discussed before, the intrinsic parallelism 
in the problem is reduced by the processing from 'pixel- 
parallelism' at the low level, through 'symbol- 
parallelism' at the intermediate level, to 'unit-parallelism' 
(or a serial problem) at the high level. Load balancing 
suggests that the parallelism should be reduced equally at 
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each stage which, in turn, implies the number of PEs 
should be reduced by the same factor between each level 
and that the factor is N, once again supporting the 
hypothesis. 

Row Processing 

Although not strictly supporting the hypothesis but, 
nevertheless, adding weight to the conclusion that there 
should be N processors in the intermediate level, it is 
worth noting that the intermediate-level processor could 
very well be structured as a row processor, with N ele- 
ments in the row. It can be argued that the low level 
processes two-dimensional data optimally and the high 
level processes zero-dimensional data optimally; there 
would seem to be some logic in constructing an 
intermediate-level processor optimised for one- 
dimensional data. 

Thus five hints can be found to help the computer 
architect to make a 'best guess' as to how many PEs to 
include in the intermediate-level layer. The indication is 
that N PEs would provide about the right amount of com- 
puting power. The way in which they are connected 
together and how they communicate with the other layers 
needs further thought. 

await processing and, perhaps, subsequent accessing via a 
multiplexer. This accessing process can easily be the 
bottleneck in an operation, rather than the use of shared 
data paths outside the PE itself. 

The massive parallelism in the low-level algorithms is 
less likely to occur at the intermediate level. As an 
example, consider the analysis of a plane, straight-sided 
figure. At the low level, ends and vertices would be 
identified and pixels corresponding with them would bear 
an appropriate label in the output array. The role of the 
intermediate layer might then be to establish the relative 
orientations of these labelled features and to trace their 
connectivity. An output from that layer could be a list of 
the form: 

etc. 

where the features listed within the brackets are those 
connected by lines in the image to the feature named in 
front of the bracket and where the positional relationships 
are as stated. Although the actual tracing of the connec- 
tions would probably be carried out by label propagation 
in the low-level processor, the list construction would be 

CONNECTION STRUCTURES 
assigned to the intermediate level and would require PEs 
to visit regions of the iconic data to abstract the necessary 

In one sense, all communication schemes in multiple 
PE processors are a compromise between what would be 
maximally efficient and what can be afforded. Ideally, 
every PE would have a direct communication link with 
every other PE in the system, although, it must be admit- 
ted, the programming and control of such a system would 
present enormous difficulties. An acceptable comprom- 
ise usually amounts to providing short paths between PEs 
which often need to communicate and longer ~ a t h s  (i.e. 
via several other PEs en route) between allithdr of 
PEs. In practice, this policy often implies direct paths 
between adjacent PEs in the low-level processor, the con- 
nection structure forming a two-dimensional mesh with 
toroidal connections linking the edges. Enhancements of 
this connection scheme, such as the pyramid [6] or a 
hypercube network, as in the Connection Machine [I], 
represent attempts to extend the scope of the low-level 
processor into the domain of intermediate-level process- 
ing. Their value in low-level processing is to be ques- 
tioned since the additional paths have only a small 
bandwidth and are inefficient when, as is often the case in 
low-level processing, large quantities of pixel data are to 
be moved around in the array (e.g. in performing affine 
transformations of the image). 

Although the intermediate layer contains fewer (N) 
PEs, the @ connections that would give all-to-all con- 
nectivity would still be prohibitively expensive, espe- 
cially when the design of the PEs necessary to deal with 
the data flow is taken into account. Even when hard- 
wired connections are provided between pairs of PEs, the 
data entering a PE must be stored in separate registers to 

information. An obvious need would be for independent 
control of the intermediate-level PEs, as it would be 
difficult or inefficient, or both, to force their operation 
into an SIMD mode; the lists are of differing lengths and 
the tasks of constructing the lists differ both in type and 
complexity. Thus whilst it would be a design aim that 
every PE would be fully occupied for most of the avail- 
able time, this could only be achieved if all were allowed 
simultaneously to execute different programs. 

This short example does illustrate an important point: 
as the computation proceeds and the parallelism decreases 
in the problem, the decrease is partly in the number of 
data items to be processed and partly in the diversity of 
the processing required on the reduced data. The first 
point leads to a smaller number of PEs but the second 
point indicates increasing independence in the control of 
the PEs. One possible configuration for the intermediate 
layer would be a row processor with semi-autonomy in 
each PE; semi-autonomy here implies that instructions 
are broadcast to all PEs, as in an SIMD machine, but that 
each PE can interpret the insmction according to data 
stored within the PE itself [g]. An alternative mode of 
operation is provided by the bus-orientated systems, such 
as POLYP [9] in which a large number of microproces- 
sors are connected by means of a high speed bus and 
share tasks between themselves by a process known as 
'spawning'. Each PE stores the entire code for all the 
tasks and the appropriate segment of the code is executed 
as the need arises. These two examples represent the 
extremes of local autonomy and the choice between them 
would clearly be task dependent. In both cases, care 
must be taken to avoid a communication block along the 
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line of processors. CLIP7 has direct links between 
immediate neighbours and operates in a shift register 
mode; POLYP has the capability of spreading communi- 
cation between several parallel buses (the POLYBUS). 

Since it is to be expected that the intermediate-level 
processing will not involve moving large quantities of 
data, a hypercube network offers some attractive advan- 
tages and, indeed, even if the PEs are conceptually in a 
linear array, the linear nearest neighbour connections 
form a subset of the complete hypercube set. It will be 
remembered that a hypercube network is arranged so that 
if all the N PEs are given unique binary labels (with log N 
binary bits in each label), then there are hard-wired con- 
nections between all pairs of PEs whose labels differ by 
only one bit. In order to be consistent with the linear 
array architecture, PEs in the array must be labelled such 
that the sequence of labels down the array follows a Gray 
code (i.e. a code in which consecutive values differ by 
only one bit at a time). It follows that no PE-to-PE path 
need exceed log N steps. Each PE in the row processor 
must have access to a column in the low-level array of 
PEs and is therefore required to deal, either in parallel or 
serially, with N inputs, in addition to the log N inputs 
from the other PEs in the same level as itself. 

It is important to note that the proposed intermediate- 
level processor should not be confused in structure or 
purpose with the hypercube network which overlies the 
two-dimensional mesh in the Connection Machine. The 
hypercube connections there are intended mainly as a 
means of enhancing low-level communications and do 
not link with further PEs. Nevertheless, confusion of 
purpose is inevitable in that even the low-level processor 
is a general purpose machine, being able to cany out the 
entire image analysis task itself, albeit inefficiently. 
Low-level processors are usually hosted by conventional, 
single-processor computers and the combined system can 
therefore be regarded as a three-layer machine with its 
middle layer collapsed partly into the lower layer and 
partly into the host. It is equally a matter of choice as to 
how the workload is to be divided between the low-level 
processor and the host and enhancements of the low level 
will often contribute to its capability to handle 
intermediate-level processing. 

CONCLUSIONS 

Although the tasks to be performed by an 
intermediate-level image processor can be conveniently 
described as iconic-to-symbolic transformations, the wide 
variety of output data structures involved prevents a com- 
plete analysis of the relevant algorithms; furthermore, 
this level of processing is still not well understood so that 
it must be expected that there are many more useful algo- 
rithms yet to be discovered. It is this lack of precise 
information which prevents the systematic design optimi- 
sation of intermediate-level processors and which 
prompts a more heuristic approach to the problem. In this 
paper, guidelines have been identified which suggest that 
the intermediate layer should comprise N PEs (assuming 
the image has N2 pixels), connected as a linear array and 

with additional connections to complete a hypercube net- 
work. The PEs themselves should be more powerful 
than the low-level PEs and, ideally, should be capable of 
running their own programs. This proposal will now be 
studied in emulation and benchmarked against existing 
intermediate-level algorithms. 
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