
IAPR Workshop on CV - Speaal Harhare and Industrial Applications OCT.12-14. 1988, Tokyo

SOME CONSIDERATIONS ON THE LIMITATIONS OF
IMAGE PROCESSING COMPUTER ARCHITECTURES

Michael J. B. Duff

Department of Physics and Astronomy
University College London

Gower Street, London WClE 6BT

ABSTRACT

The problems encountered in low-level processing of
images, in which the output is another image, have mostly
been solved, in that a good selection of algorithms exist
and processors have been optimised to implement them.
The situation is far less well understood at the next level
of processing, where neither algorithms nor architectures
have been optimised. In this paper, the general nature of
intermediate-level processing is explored and guidelines
discussed to aid the design of efficient processors.

INTRODUCTION

Image processing is a loosely defined concept and can
mean different things to different people. In this paper,
image processing is taken to comprise all those operations
on images and on data derived from images that are
necessary in order to interpret, enhance or restore images.
Again, for the purposes of this paper, images are digitised
optical images, usually on a square grid, such that all the
relevant information in the image can be represented by
an N by N array of binary numbers, each with B bits,
where N ranges typically between 32 and 1024 and B
between 1 and 8 (more for colour images). Image pro-
cessing operations divide conveniently into three classes:
low-level, intermediate-level and high-level [I]. This
partitioning is convenient since it is both conceptually
meaningful and technically significant. The low-level
processing is concerned with taking in image data as an N
by N array of pixels, abstracting information from the
data (usually local information in the sense that each part
of the abstracted data is derived from a group of pixels
which are all close to each other) and outputting the result
in the form of another N by N array of pixels. In the out-
put array, each pixel has a value which is a measure of a
local image property, such as edge strength, edge direc-
tion, texture type, and so on. The data can be described
as still being in an iconic form.

It therefore follows that intermediate-level processing
must take in iconic data but the output data is definitely
non-iconic, i.e. it is symbolic. The data may take the
form of.lists, graphs, histograms or even two-dimensional
arrays which are not N by N (that is to say, not the same
size as the original image). Data elements can no longer
have the same geometrical or topological relationships to

the image pixels and, in fact, individual data points may
represent information derived from pixels which are
widely separated in the iconic representations.

The last stage, high-level processing, involves seman-
tic analysis. The symbolic data is interpreted and
meaning extracted from the data. This stage must be
prepared to deal efficiently with input data in a variety of
formats and will usually also be expected to interact with
a knowledge database. Its output may require a good
human interface or, perhaps, may involve controlling a
mechanical device. It is the level on which the demands
are least well defined and it must therefore be the most
flexible.

This classification scheme can obviously be criticised
for being over-simplified but it does provide a useful
framework for discussing the desirable characteristics of
image processor architectures optimised for certain types
of processing. A more complete scheme would address
the question of classifying systems which pass data and
control in both directions through the three levels so that,
for example, partial interpretation of the image can be
used to control the course of the low-level feature extrac-
tion. Again, the scheme does not deal well with systems
which use knowledge to aid image transformation.
Nevertheless, dividing the total processing into the three
broad stages covers the main aspects of the majority of
systems which have been proposed and is therefore a
good starting point for further analysis and a suitable
basis for later refinement of the arguments.

The purpose of this paper is to try to identify the fac-
tors limiting processor performance and to relate these
factors to the characteristics of the three levels of process-
ing. The following sections treat each level in turn.

Low-Level Processing

This level, characterised by the phrase 'image in,
image out', is required to create a new image in which
each pixel has a value derived from a neighbourhood of
input pixels centred around the array position of the out-
put pixel. At its simplest, the neighbourhood is local in
that the pixels in the neighbourhood are all adjacent to the
input pixel corresponding exactly to the output pixel.

lAPR Work~h~p Ofl CV - Speaal Hardware and Industrial Applications OCT.12-14, 1988, Tokyo

We can write:

where F represents any function of the grey-levels g of
the set of pixels in the 3 by 3 neighbourhood centred on
the selected pixel at (x,y). For more complex operations,
the neighbourhood may have to be enlarged and, in the
limit, may embrace the entire input image. Even in this
extreme case, it is always possible to decompose every
operation into a finite sequence of local neighbourhood
operations. Additionally, somewhere in the system, it is
necessary to incorporate a test which checks for empty
arrays of (one-bit) data and a counter which counts the
one-bits in a binary array. Generally speaking, the large
majority of useful low-level operations are confined to
small neighbourhoods, presumably because, at the pixel
level, the relevance of the information in one pixel to that
in another decreases as the pixels become further apart in
an image. Thus nearby pixels contribute to edge infor-
mation in that grey-level gradients are measured by
differencing adjacent pixel values; furthermore, edge ele-
ments are formed by clustering neighbouring pixels in
regions of high density gradient. Arguments of this type
suggest that, for low-level processing, communication
between processing elements (PEs) and pixels should be
facilitated in multiprocessor systems and that good com-
munication paths should be available between PEs
assigned to neighbouring pixels.

This philosophy has been implemented to the full in
most two-dimensional mesh array processors [2,3,4] in
which a PE is assigned to each pixel and all PEs connect
with adjacent PEs in a 3 by 3 local neighbourhood (either
with 4- or 8- connectivity). Good pixel to PE communi-
cation is usually only achieved once the data has been
locally stored in the PEs, mainly because neither optical
sensors nor framestores have pixel-parallel outputs.
Alternatively, many systems have been constructed since
the earliest days of image processing [5] until the present
day which use a pipeline system to give a single, power-
ful processor parallel access to 3 by 3 neighbourhoods of
pixel data; as pixels stream through the pipeline, in
image raster-scan order, the effect is as if the 3 by 3
neighbourhood raster-scans though the image, producing
an output stream of transformed pixels in step with the
incoming pixel stream. Systems such as these are partic-
ularly useful when only simple processing is required
such that the data input and output times are comparable
with the processing time.

The essential qualities of the low-level processor
therefore depend on the requirement that the PEs should
all efficiently process data from small regions of the
image and should output into single pixels. The number
of communication channels is an order of magnitude
larger than the number of processors (or number of pixels
in the image). The high degree of parallelism possible at
this level is intrinsic in the problem at this level, i.e. the
same operation usually can be performed simultaneously
on every pixel. In one sense, there is no data reduction at
this stage of the processing since the output data consists
of the same number of pixels as the input; in fact, since

there may be several similar outputs representing image
properties, including the input data, which will usually be
retained, it could be argued that there has been a data
expansion rather than a data reduction.

Intermediate-Level Processing

This stage of processing will be required to take in one
or more N by N arrays of pixel data and then severely to
reduce the data to either a much smaller array, a list, a
graph or perhaps to a mixture of different data structures
which are all in some way descriptive of the image.
Whilst the input data will still be positionally related to
the image in that each data point will correspond to an
image property in the region of that point, the same will
not be true of the output data which, in general, will carry
global information about the image.

It is not difficult to specify the required properties of
this stage in relation to the input data structure. As in the
lower level, there is a need to enter every data point into a
PE in the intermediate level. Since the data will be
stored in each low-level PE in a two-dimensional array of
PEs, this communication could be highly parallel; the
situation is obviously less satisfactory if a pipeline pro-
cessor has been used for the low-level processing. This
can be taken to imply that the output data is again stored
in an image buffer (such as a framestore) which will only
permit serial access. However, the problem which next
arises is that the operations to be carried out are likely to
involve data from much larger areas of the array, perhaps
clustering edge pixels into whole object edges or explor-
ing the relative positions of object features (e.g. comers
or edge intersections). To do this, PEs must now be able
to communicate freely with more distant PEs and also be
able to output data in structures which are not necessarily
matched to the relative positions of the PEs themselves.

So far, the usual approach to this stage of processing
has been to assemble PEs along a high-speed bus, which
then cames all the communication traffic. The bus pro-
vides a non-parallel 'all-to-all' linkage between PEs
which is efficient only when the amount of computation
in each PE is sufficiently large to require computation
times long compared with inter-PE communication times.
If this is not the case, then bus contention soon forces an
increasing fraction of the PEs to stand idle, waiting for
further data. Alternative schemes, such as a hypercube
network, eliminate some of the difficulties but will, ulti-
mately, still prove inadequate when a particular algorithm
involves large data transfers.

Fundamentally, the major obstacle to optimisation at
this level of processing is that the science of image
analysis has not yet advanced to the point where the rela-
tive frequency of occurrence of all the various algorithms
which have been developed is known; indeed, it can be
hoped that there are many valuable algorithms yet to be
discovered. This is in contrast to low-level processing
which is both more highly developed and theoretically
better founded and is consequently susceptible to efficient
matching with processor architectures.

IAPR Workshop on CV -Special Hardware

High-Level Processing

and Industrial Applications OCT.12-14. 1988. Tokyo

The high-level processor in this threefold system must
almost certainly be a general purpose computer, although
future studies may suggest the use of architectures speci-
alised for reasoning and running A1 languages such as
Prolog or perhaps processors for interrogating databases.
At the present state-of-the-art, it is far from clear what is
required and no worthwhile specialisation has been
justified. Whilst researchers are still in this state of
uncertainty, it is clear that the best policy is to aim at
maximum flexibility and programmability, placing the
need for a good user interface above that of obtaining
high performance.

T H E MIDDLE LAYER

Since the characteristics of the low-level architecture
are reasonably well defined (offering a choice between at
least two acceptable alternatives) and the high-level pro-
cessor is almost certainly required to be a general purpose
computer, attention can be focussed on the intermediate
level. Ideally, the best approach would be to consider the
most commonly used algorithms, analysing their compu-
tational and data communication requirements so that an
appropriate configuration of PEs might be proposed.
This configuration could then be benchmarked against the
algorithms used in the analysis and against a weighted
mix of these together with the less common algorithms.
Unfortunately, as was stated above, the information
needed to cany out this exercise is not available, except
in very broad terms. In the absence of precise informa-
tion, there is some justification for using methods which
are non-rigorous in an attempt to find a workable solution.

The starting points for the discussion are the assump-
tions that the low-level layer will comprise N by N PEs
and the high-level layer one PE only. With these
assumptions, the first question to be answered is: how
many PEs should be used to form the intermediate-level
layer? The connections to the layer and within the layer
are a separate issue which will be considered later
(although the optimum connection strategy would obvi-
ously depend on the number of PEs employed and could
affect that number if cost constraints are to be taken into
account). In the interest of efficiency, it will be assumed
that the number of PEs will be the minimum necessary to
give the highest available performance. It is worth not-
ing at this point that adding further PEs can reduce
overall performance in that communication to or from
idle PEs in part of a system will, as it were, 'distract' the
working PEs and thus reduce their capacity for useful
work. A less anthropomorphic description of this effect
would be to point to the communication bandwidth limi-
tation present in all practicable systems and to note that
even idle PEs (i.e. PEs into which no part of a decom-
posed problem can be directed) will usually be polling
other PEs in an attempt to find tasks to perform. It is
proposed to examine the hypothesis that the optimum
number of PEs in the intermediate-level layer is the
geometric mean of the numbers on either side of the
layer, i.e. N.

SUPPORTING ARGUMENTS FOR T H E
GEOMETRIC MEAN HYPOTHESIS

None of the following arguments is to be seen as
conclusive in itself but rather as a contribution to a body
of evidence pointing to the same general conclusion. A
critic of this approach might reasonably say that five
spurious pieces of information cannot add up to one
indisputable fact. In reply, it could be said that there
would seem to be no reason to claim that the arguments
presented are wrong; they are merely weak. They
should, perhaps, be taken as a challenge to the reader to
find more conclusive evidence, either one way or the
other.

Mathematical Sequence

In the absence of a well defined role for the
intermediate-level processor, insofar as the range of algo-
rithms to be considered is large in number and diverse in
type, and assuming that general considerations can be
taken to imply that the optimum number of PEs will lie
somewhere between @ and 1, then it seems likely that
the number sequence: @, M, 1 (where M is the number
of PEs we are trying to determine) will be one which
occurs elsewhere in physical systems. Typical candi-
dates would be (@ + 1)/2 (the average), N (the geometric
mean), or, again, N (the value to which N2 would decay
exponentially in half the time it would take to decay to 1).
Thus choosing M to be N is in accordance with two of
these examples.

Impedance Matching

In a three-stage system in which the output impedance
of the first stage is Z, and the input impedance of the third
stage is Z3, if it is required to link the two stages by
means of a middle stage whose input and output
impedances are both Z2, then choosing Z2 to be the
geometric mean of Z , and Z3 maximises the power
delivered into the output. Can this concept of optimal
matching be extended to the information flow in a three-
layer information processing system?

Communication of Data

If for reasons of bandwidth limitation or because of the
processing capability of a PE, each PE can deal with a
maximum of K inputs from the layer below, then the sin-
gle PE in the top layer will expect to receive data from K
PEs in the intermediate level. Similarly, each of these
will serve K PEs in the lowest level, from which it can be
deduced that K is equal to N.

Reduction of Parallelism

As has been discussed before, the intrinsic parallelism
in the problem is reduced by the processing from 'pixel-
parallelism' at the low level, through 'symbol-
parallelism' at the intermediate level, to 'unit-parallelism'
(or a serial problem) at the high level. Load balancing
suggests that the parallelism should be reduced equally at

IAPR Workshop on CV - Spedal Harchare znd Industrial Applications OCT.12-14, 1988. Tokyo

each stage which, in turn, implies the number of PEs
should be reduced by the same factor between each level
and that the factor is N, once again supporting the
hypothesis.

Row Processing

Although not strictly supporting the hypothesis but,
nevertheless, adding weight to the conclusion that there
should be N processors in the intermediate level, it is
worth noting that the intermediate-level processor could
very well be structured as a row processor, with N ele-
ments in the row. It can be argued that the low level
processes two-dimensional data optimally and the high
level processes zero-dimensional data optimally; there
would seem to be some logic in constructing an
intermediate-level processor optimised for one-
dimensional data.

Thus five hints can be found to help the computer
architect to make a 'best guess' as to how many PEs to
include in the intermediate-level layer. The indication is
that N PEs would provide about the right amount of com-
puting power. The way in which they are connected
together and how they communicate with the other layers
needs further thought.

await processing and, perhaps, subsequent accessing via a
multiplexer. This accessing process can easily be the
bottleneck in an operation, rather than the use of shared
data paths outside the PE itself.

The massive parallelism in the low-level algorithms is
less likely to occur at the intermediate level. As an
example, consider the analysis of a plane, straight-sided
figure. At the low level, ends and vertices would be
identified and pixels corresponding with them would bear
an appropriate label in the output array. The role of the
intermediate layer might then be to establish the relative
orientations of these labelled features and to trace their
connectivity. An output from that layer could be a list of
the form:

etc.

where the features listed within the brackets are those
connected by lines in the image to the feature named in
front of the bracket and where the positional relationships
are as stated. Although the actual tracing of the connec-
tions would probably be carried out by label propagation
in the low-level processor, the list construction would be

CONNECTION STRUCTURES
assigned to the intermediate level and would require PEs
to visit regions of the iconic data to abstract the necessary

In one sense, all communication schemes in multiple
PE processors are a compromise between what would be
maximally efficient and what can be afforded. Ideally,
every PE would have a direct communication link with
every other PE in the system, although, it must be admit-
ted, the programming and control of such a system would
present enormous difficulties. An acceptable comprom-
ise usually amounts to providing short paths between PEs
which often need to communicate and longer ~ a t h s (i.e.
via several other PEs en route) between allithdr of
PEs. In practice, this policy often implies direct paths
between adjacent PEs in the low-level processor, the con-
nection structure forming a two-dimensional mesh with
toroidal connections linking the edges. Enhancements of
this connection scheme, such as the pyramid [6] or a
hypercube network, as in the Connection Machine [I],
represent attempts to extend the scope of the low-level
processor into the domain of intermediate-level process-
ing. Their value in low-level processing is to be ques-
tioned since the additional paths have only a small
bandwidth and are inefficient when, as is often the case in
low-level processing, large quantities of pixel data are to
be moved around in the array (e.g. in performing affine
transformations of the image).

Although the intermediate layer contains fewer (N)
PEs, the @ connections that would give all-to-all con-
nectivity would still be prohibitively expensive, espe-
cially when the design of the PEs necessary to deal with
the data flow is taken into account. Even when hard-
wired connections are provided between pairs of PEs, the
data entering a PE must be stored in separate registers to

information. An obvious need would be for independent
control of the intermediate-level PEs, as it would be
difficult or inefficient, or both, to force their operation
into an SIMD mode; the lists are of differing lengths and
the tasks of constructing the lists differ both in type and
complexity. Thus whilst it would be a design aim that
every PE would be fully occupied for most of the avail-
able time, this could only be achieved if all were allowed
simultaneously to execute different programs.

This short example does illustrate an important point:
as the computation proceeds and the parallelism decreases
in the problem, the decrease is partly in the number of
data items to be processed and partly in the diversity of
the processing required on the reduced data. The first
point leads to a smaller number of PEs but the second
point indicates increasing independence in the control of
the PEs. One possible configuration for the intermediate
layer would be a row processor with semi-autonomy in
each PE; semi-autonomy here implies that instructions
are broadcast to all PEs, as in an SIMD machine, but that
each PE can interpret the insmction according to data
stored within the PE itself [g]. An alternative mode of
operation is provided by the bus-orientated systems, such
as POLYP [9] in which a large number of microproces-
sors are connected by means of a high speed bus and
share tasks between themselves by a process known as
'spawning'. Each PE stores the entire code for all the
tasks and the appropriate segment of the code is executed
as the need arises. These two examples represent the
extremes of local autonomy and the choice between them
would clearly be task dependent. In both cases, care
must be taken to avoid a communication block along the

IAPR Workshop on CV - Spedal Hadware and Indubtrial Applications OCT.12-14. 1988. Tokyo

line of processors. CLIP7 has direct links between
immediate neighbours and operates in a shift register
mode; POLYP has the capability of spreading communi-
cation between several parallel buses (the POLYBUS).

Since it is to be expected that the intermediate-level
processing will not involve moving large quantities of
data, a hypercube network offers some attractive advan-
tages and, indeed, even if the PEs are conceptually in a
linear array, the linear nearest neighbour connections
form a subset of the complete hypercube set. It will be
remembered that a hypercube network is arranged so that
if all the N PEs are given unique binary labels (with log N
binary bits in each label), then there are hard-wired con-
nections between all pairs of PEs whose labels differ by
only one bit. In order to be consistent with the linear
array architecture, PEs in the array must be labelled such
that the sequence of labels down the array follows a Gray
code (i.e. a code in which consecutive values differ by
only one bit at a time). It follows that no PE-to-PE path
need exceed log N steps. Each PE in the row processor
must have access to a column in the low-level array of
PEs and is therefore required to deal, either in parallel or
serially, with N inputs, in addition to the log N inputs
from the other PEs in the same level as itself.

It is important to note that the proposed intermediate-
level processor should not be confused in structure or
purpose with the hypercube network which overlies the
two-dimensional mesh in the Connection Machine. The
hypercube connections there are intended mainly as a
means of enhancing low-level communications and do
not link with further PEs. Nevertheless, confusion of
purpose is inevitable in that even the low-level processor
is a general purpose machine, being able to cany out the
entire image analysis task itself, albeit inefficiently.
Low-level processors are usually hosted by conventional,
single-processor computers and the combined system can
therefore be regarded as a three-layer machine with its
middle layer collapsed partly into the lower layer and
partly into the host. It is equally a matter of choice as to
how the workload is to be divided between the low-level
processor and the host and enhancements of the low level
will often contribute to its capability to handle
intermediate-level processing.

CONCLUSIONS

Although the tasks to be performed by an
intermediate-level image processor can be conveniently
described as iconic-to-symbolic transformations, the wide
variety of output data structures involved prevents a com-
plete analysis of the relevant algorithms; furthermore,
this level of processing is still not well understood so that
it must be expected that there are many more useful algo-
rithms yet to be discovered. It is this lack of precise
information which prevents the systematic design optimi-
sation of intermediate-level processors and which
prompts a more heuristic approach to the problem. In this
paper, guidelines have been identified which suggest that
the intermediate layer should comprise N PEs (assuming
the image has N2 pixels), connected as a linear array and

with additional connections to complete a hypercube net-
work. The PEs themselves should be more powerful
than the low-level PEs and, ideally, should be capable of
running their own programs. This proposal will now be
studied in emulation and benchmarked against existing
intermediate-level algorithms.

REFERENCES

1. S. L. Tanitnoto, Architectural issues for intermediate-
level vision, Intermediate-Level Image Processing, ed.
M. J. B. Duff, pp. 3-17. Academic Press, London
(1986).

2. M. J. B. Duff, Review of the CLIP image processing
system, Proc. Nar. Comp. Conf., 1055-1060 (1978).

3. S. F. Reddaway, The DAP approach, Infotech State of
the Art Report on Supercomputers, Infotech Ltd.,
Maidenhead (1979).

4. K. E. Batcher, Design of a massively parallel proces-
sor, IEEE Trans. C-29,836-840 (1980).

5. K. Preston, Jr., Feature extraction by Golay hexagonal
pattern transforms, IEEE Trans. C-20, 1007-1014
(197 1).

6. V. Cantoni and S. Levialdi (eds.), Pyramidal Sys-
tems for Computer Vision. Springer-Verlag. Berlin
(1986).

7. W. D. Hillis, The Connection Machine. MIT Press,
Cambridge, Mass. (1985).

8. T. J. Fountain, K. N. Matthews, and M. J. B. Duff, The
CLIP7A Image Processor, IEEE Trans. PAMI-IO,
310-319 (1988).

9. W. G. Griswold. P. H. Bartels, R. L. Shoemaker, H. G.
Bartels, R. Maenner, and D. Hillman, Multiprocessor
computer system for medical image processing,
Intermediate-Level Image Processing, ed. M. J. B.
Duff, pp. 267-286. Academic Press, London (1986).

