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Abstract 
 

Motion blur is a common artifact that affects imaging 

systems. Synthetically creating motion blur in two-

dimensional (2D) images is a well-understood process and 

has been used to develop deblurring systems. However, 

there are no well-established techniques for synthetically 

generating motion blur within three-dimensional (3D) 

images since the behavior of motion blur within 3D images, 

such as depth maps and point clouds, is not as well-

understood. In this work, we develop a simple and accurate 

framework to synthetically generate motion blur within 

depth maps that accurately captures the behavior of the 

real motion blur that is encountered using a Time-of-Flight 

(ToF) sensor. We develop a probabilistic model that 

predicts the location of invalid pixels that are typically 

present within depth maps that contain real motion blur. 

We also introduce a method to quantify the performance of 

a synthetic motion blur filter for depth maps based on a 

comparison between a depth map with synthetic motion 

blur and a depth map with real motion blur. Our results 

indicate that our framework is able to achieve an average 

Boundary F1 (BF) score of 0.8864 for invalid pixels for 

synthetic radial motion blur and a BF score of 0.8401 for 

synthetic linear motion blur. 
 

1. Introduction 

With the growth in the number of 3D sensor technologies 

in the market, understanding their behavior is critical to 

widespread adoption. This work presents a methodology 

for synthetically generating motion blur within a depth map 

that mimics the real motion blur observed when using a 

ToF sensor. The proposed models can be used by 

researchers to develop more effective and adaptive 

deblurring techniques that work in applications including 

autonomous vehicles, drones, robotics, and logistics. In 

these applications, a ToF sensor or objects within the field 

of view of the ToF sensor may be moving with respect to 

each other. The relative movement between the ToF sensor 

and other objects can create a motion blur effect which 

increases the number of invalid pixels and flying pixels that 

are present in a depth map and distorts the appearance of 

objects in the depth map captured by a ToF sensor [1]. 

Synthetically creating motion blur in 2D images is a 

well-understood process [2] [3]. In traditional 2D images, 

motion blur appears as a softening of edges within a 2D 

image along a motion path. The motion blur in depth maps 

is distinct from 2D images because of the presence of 

invalid pixel values and flying pixels which do not exist in 

2D image motion blur. To our knowledge, there are no 

well-established techniques for synthetically generating 

motion blur within 3D images such as depth maps and point 

clouds. In previous works, motion blur in depth maps has 

been observed as a baseline for comparing different 3D 

sensing technologies or for evaluating the performance of 

various deblurring algorithms [1][4]. However, these 

works typically focus on how to minimize the effects of 

motion blur and they do not provide any insight about how 

to synthetically create motion blur. For example, radial 

motion blur is captured using both a Kinect v1 sensor that 

uses structured light and a Kinect v2 sensor that uses ToF 

[4]. For each Kinect sensor, a depth map is generated for a 

flat fan blade, a Siemens Star, while it is static and while it 

is rotating and the distortion between the static and rotating 

depth maps is computed. The focus of reference [4] is 

simply to compare the amount of distortion that is present 

in the depth maps generated by the different Kinect sensors.  

  In this work, we introduce a probabilistic model that is 

used to predict the location of invalid pixels, also referred 

to as zero-value pixels, that are present when motion blur 

occurs. Several types of motion blur exist such as radial 

motion, linear motion, out-of-focus blur, or a combination 

of blur types [5]. Capturing 3D images of motion blur in a 

real-world environment is challenging because the motion 

and the speed of objects are not always easily controllable. 

Using our framework, a synthetic radial or linear motion 

blur can be applied to depth maps of static objects. If 

desired, the blurred depth map can then also be converted 

into a point cloud that will include the applied motion blur. 

The ability to synthetically generate motion blur in 3D 

images enables future works to create test benches for 

evaluating algorithms for deblurring this motion blur.  

In summary, this work contributes to the state of the art 

by: 1) Demonstrating a framework that can be used to 

synthetically generate motion blur in depth maps that 

mimics the appearance and behavior of real motion blur 

that can be observed using a ToF sensor, 2) Developing a 

probabilistic model that predicts the location of invalid 

pixels that are typically present in depth maps that contain 

a real motion blur, and 3) Quantifying the performance of 

a motion blur filter for depth maps based on a comparison 

between a depth map with synthetic motion blur and a 

depth map with real motion blur.  

This paper is organized as follows. Section 2 discusses 

our methodology for synthetically generating motion blur 

within a depth map. Section 3 discusses our experimental 

setup and results. Section 4 provides concluding remarks.   
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2. Methodology 

Motion blur appears in depth maps as an increase in the 

number of zero-value pixels (i.e. invalid pixels) and flying 

pixels that are present near depth discontinuities within a 

scene [1]. In general, ToF sensors determine depth values 

based on the amount of time it takes for light that is emitted 

from the ToF sensor to return to the ToF sensor after 

reflecting off a surface within a scene. As an object moves 

with respect to the ToF sensor, the light that is reflected 

near the edges of the object may result in erroneous depth 

values that do not accurately represent the surface of the 

object. The increase in the number of zero-value pixels and 

flying pixels results in fewer pixels on the surface of the 

object which tends to distort the appearance of the object 

within depth maps. For example, the surface area of an 

object may reduce and the size of openings may increase.  

In this work, we propose an approach for synthetically 

applying radial motion blur and linear motion blur to the 

depth map of a static object. After synthetically applying 

the motion blur to the depth map, the resulting depth map 

mimics the appearance and behavior of a depth map that 

would be observed if the object were moving. The key steps 

to the proposed methodology are as follows. 1)  The ToF 

sensor is configured to generate a depth map for an object. 

In this configuration, both the ToF sensor and the object are 

static. 2) After generating the depth map, we apply either a 

radial blur filter or a linear blur filter to the depth map. The 

radial blur filter and the linear blur filter are both 

implemented using 2D spatial filters that are applied to the 

depth map similar to how motion blur filters are 

traditionally applied to 2D images. In our experiments, the 

motion blur filter is applied to a user-defined region of 

interest within the depth map. 3) We then use our 

probabilistic model to predict the locations of new zero-

value pixels within the depth map. The probabilistic model 

predicts whether a pixel location within the depth map 

should have a zero value after the motion blur filter is 

applied based on its neighboring pixels. 4) The motion 

blurred depth map is then updated to include the zero-value 

pixels predicted using the probabilistic model.  

 

2.1. Motion blur filters  
 

In our work, the initial depth map, 𝐼(𝑥, 𝑦), is first obtained 

from the TOF sensor where (𝑥, 𝑦) identifies pixel locations 

within the depth map. A region-of-interest is then defined 

within the depth map. In the case of the radial motion blur 

filter, a circular region-of-interest is defined around our 

object. The depth map that is obtained from the TOF sensor 

includes a combination of zero-value and non-zero value 

pixels. The zero-value pixels correspond to invalid pixels 

where the TOF sensor was unable to determine a depth 

value. The non-zero pixels correspond to locations where 

the TOF sensor was able to determine depth value. Before 

we apply our motion blur filter, we first perform a bilinear 

interpolation process to assign the zero-value pixels a depth 

value based on their neighboring pixels as defined in 

Section 2.2. This interpolation process allows the motion 

blur filter to be applied more accurately to the depth map.  

After interpolation, we apply a 2D spatial filter to the 

depth map to simulate the appearance of a radial motion 

blur. In this work, we use a 2D spatial filter from JH Labs 

[5] to average neighboring pixels to apply a radial blur filter 

to our depth map. The radial motion blur filter blurs the 

depth map by blurring each pixel of the depth map along a 

tangential direction to the path of the target pixel. The input 

parameters for the radial motion blur filter are a spinning 

center, a spinning radius, and a rotation angle. In this 

experiment, the filtering center is denoted as the pre-

defined center location of the spinning object. The spinning 

radius is set as the diagonal length of the region-of-interest, 

where the depth map pixels are only filtered (blurred) 

within the region-of-interest. The rotation angle is 

proportional to the spinning speed of the object and can be 

selected based on the desired level of simulated speed. A 

linear motion blur filter can be applied to the depth map 

using a process similar to the process described in this 

section. The linear motion blur filter input parameters are 

the linear blur direction and a blur distance. The linear blur 

direction is the motion path of the object within the depth 

map. In our experiments, the direction is set to a horizontal 

direction that simulates the object moving horizontally 

across a surface. The blur distance is proportional to the 

moving speed of the object and can be selected adaptively.  

  

2.2. Probabilistic model for predicting zero-value 

pixels  
 

In this section, we develop a probabilistic model that 

predicts the location of zero-value pixels in the motion-

blurred depth map based on values of neighboring pixels. 

When real motion blur occurs in the depth map from a TOF 

sensor, there is an increase in the number of zero-value 

pixels that are present near discontinuities and edges in the 

depth map. As the speed of the object increases, the number 

of zero-value pixels also increases. To predict the locations 

of new zero-value pixels our probabilistic model uses three 

assumptions. 1) The number of neighboring pixels that are 

in the window for predicting the final state of a pixel is 

proportional to the speed of the object. 2) For each pixel, 

the neighboring pixels in the window with the same state 

(i.e. 0 or 1) will contribute more to the final state of the 

pixel. The final state of the pixel is also more likely to be 

affected by neighboring pixels with a state of zero because 

zero-value pixels tend to appear in clusters. 3) The pixels 

with an initial state of zero are likely to remain in state zero. 

We first convert the original depth map into a binary 

depth map, 𝐼𝑏(𝑥, 𝑦) , by assigning non-zero value pixels 

within 𝐼(𝑥, 𝑦) to a state of one and assigning zero-value 

pixels within 𝐼(𝑥, 𝑦)  to a state of zero. Using our 

probabilistic model generally involves iteratively selecting 

a root pixel,  𝑅 , where 𝑅 ∈  𝐼𝑏(𝑥, 𝑦) , within the defined 

region-of-interest that was defined in Section 2.1 and then 

using the probabilistic model to predict whether the root 

pixel should be a zero-value pixel in the motion-blurred 

depth map based on its neighboring pixels. After generating 

the binary depth map, we then iteratively select root pixels 

from within our region-of-interest. For each selected root 

pixel, we define a neighborhood window whose length is 



proportional to the speed of the object. Thus, a larger 

window length is used to simulate faster moving objects. 

The window is orientated to be along the motion path of the 

object. When the direction of motion for the object is 

known, the window is positioned to include neighboring 

pixels that precede the root pixel in the direction of motion. 

The window height is set to a fixed value, for simplicity. In 

this work, the window height was set to a value of one pixel 

down. When the direction of motion for the object is 

unknown or random, the window is positioned to include 

neighboring pixels that both precede and follow the root 

pixel. The window height does not change based on the 

direction of motion. Instead, the window is oriented to be 

tangential to the direction of motion. As an example, for a 

given root pixel, we use the defined window to identify a 

group of neighboring pixels, [𝑁0, 𝑁1,, …, 𝑁𝑛], where [𝑁0, 

𝑁1,, …, 𝑁𝑛] ∈  𝐼𝑏(𝑥, 𝑦).  

After identifying the neighboring pixels for the root 

pixel, we then apply our probabilistic model to the 

identified neighboring pixels. We first define a potential 

function that captures the interaction between the state of 

the neighboring pixel and the state of the root pixel as:  

𝜑(𝑠𝑅, 𝑠𝑁𝑖
) = {

(1 − |𝑠𝑁𝑖
− 𝑠𝑅|)𝑝𝑥 + |𝑠𝑁𝑖

− 𝑠𝑅|(1 − 𝑝𝑥), 𝑠𝑅 = 0

(1 − |𝑠𝑁𝑖
− 𝑠𝑅|)(1 − 𝑝𝑥) + |𝑠𝑁𝑖

− 𝑠𝑅|𝑝𝑥, 𝑠𝑅 = 1
 

(1) 

where 𝜑(𝑠𝑅 , 𝑠𝑁𝑖
)  is the potential function of the 𝑖𝑡ℎ 

neighboring pixel, 𝑠𝑁𝑖
 is the state of the 𝑖𝑡ℎ  neighboring 

pixel, and 𝑠𝑅 is the state of the root pixel. In this study, 𝑝𝑥 

is set to 0.9. We also consider the prior knowledge of the 

root pixel by determining an initial probability as 𝑝𝑅 for the 

root pixel. The probability 𝑝𝑅 is determined as: 

𝑝𝑅 = {
𝑝𝑦 ,              𝑠𝑅 = 0

1 − 𝑝𝑦,        𝑠𝑅 = 1
                             (2) 

where 𝑝𝑅 is the initial probability and 𝑠𝑅 is the initial state 

of the root pixel. In our experiments, 𝑝𝑦 is set to 0.6. 

Effectively, this process ensures that a higher probability 

weight is used when a neighboring pixel has the same state 

as the root pixel and when the root pixel has an initial state 

of zero. We then predict a probability for each root pixel 

based on the modeled potential function for each of its 

neighboring pixels and the initial probability for the root 

pixel. The predicted probability 𝑝�̂� is calculated as: 

𝑝�̂� =
∑

𝜑(𝑠𝑅, 𝑠𝑁𝑖
) ∗ 𝑝𝑅

𝜌
𝑛
𝑖=0

𝑛
 

(3) 

where 𝜌 is the normalization factor. We then assign the 

probability to the root pixel that corresponds with the 

likelihood that the root pixel will be a zero-value pixel in 

the blurred depth map. This process is repeated to assign 

probabilities for all of the root pixels within the region-of-

interest. We then apply a threshold to identify root pixels 

that will become zero-value pixels in the blurred depth 

map. The following expression describes how the threshold 

is applied: 

𝑠�̂� = {
0,              𝑝�̂� > 𝑡
1,             𝑝�̂� ≤ 𝑡

                                 (4) 

where 𝑠�̂� is the predicted state for root pixel, 𝑝�̂�  is the 

predicted probability for the root pixel, and 𝑡  is the 

threshold value which is set to 0.05. Note that the selection 

of 𝑝𝑥, 𝑝𝑦, and 𝑡 is based on a separate validation set. Once 

the zero-value pixels are identified, the blurred depth map 

described in Section 2.1 is updated to include the predicted 

zero-value pixels from the probabilistic model.    
 

3. Experiments 
 

3.1. Hardware configuration 
 

In our experiments, we use a Kinect v2 [6] sensor to 

generate depth maps for our experiments. This ToF sensor 

has a resolution of 512x424 pixels with a framerate of 30 

frames per second [7]. We used OpenKinect libraries [8] to 

capture depth information and MATLAB 2020 [11] for 

implementing our synthetic motion blur process. In our 

experiments, we disabled both the Bilateral filter and the 

Edge-aware filter for the Kinect v2 while capturing depth 

information, to ensure raw depth information is captured 

[9]. In our experiments, the Kinect v2 sensor is positioned 

in a fronto-parallel configuration at a distance of 0.78m 

away from the front surface of our object.  

For our experiments with radial motion blur, we used a 

custom radial motion device. Our radial motion device 

includes a 381mm diameter Siemens Star with six flat fan 

blades. The Siemens Star is attached to a 5v DC motor that 

is controlled using an Arduino Uno. We collected data 

while rotating the Siemens star between 60-135 RPM. For 

our experiments with linear motion blur, we used a custom 

linear motion device. Our linear motion device includes a 

box that is attached to a linear rail system. The front surface 

of the box includes three vertical openings that are each 

about 76mm by 254mm in size.  

In future works, these experiments can be extended to 

include more complex scenarios with motion that is not 

parallel to the image plane or with multiple objects.  

 

3.2. Evaluating synthetic motion blur performance  
 

Comparing a depth map with synthetic motion blur to a 

depth map with real motion blur is challenging because the 

position of objects may be different in both depth maps. 

Hence, traditional direct comparisons between two depth 

maps cannot be made without additional considerations to 

ensure that the position of objects within the depth maps is 

the same. In this work, we demonstrate a framework that 

can be used to compare a depth map with a synthetic motion 

blur to a depth map with a real motion blur. This process 

involves capturing a series of depth maps of a static object 

in different positions that would occur when the object is in 

motion. We then generate a depth map of the object in 

motion with real motion blur. The depth maps of the static 

object are then compared to the depth map with the real 

motion blur to identify the closest match based on the 

position of the object. After identifying the depth map of 

the static object that best matches the depth map of the 

object in motion, we then apply our synthetic motion blur 

to the depth map. The depth maps can then be directly 



compared to quantify the similarity between the two depth 

maps. This process enables a direct comparison between a 

depth map with synthetic motion blur and a depth map with 

real motion blur since we are able to align the position of 

an object before making the comparison. The ability to 

compare a depth map with synthetic motion blur and a 

depth map with real motion blur enables future works to 

evaluate the performance of other motion blur algorithms.  

To evaluate the performance of the zero-value pixel 

predictions from the probabilistic model described in 

Section 2.2, we use the Boundary F1 (BF) score with an 

error tolerance of 2 pixels [10]. Also, to evaluate the 

performance of non-zero value pixels from Section 2.1 

after updating the blurred depth map with the predicted 

zero-value pixels, we are using a root mean-square error 

(RMSE) between the synthetic motion blur depth map and 

the real motion blur depth map and an RMSE ratio between 

their difference and the real motion blur depth map. 

 

3.3. Motion blur experiment results  
 

Fig. 1 illustrates binary depth maps that show the locations 

of zero-value pixels and non-zero value pixels. In Fig. 1, 

the zero-value pixels are shown in white and the non-zero 

value pixels are shown in black. The first row of Fig. 1 

shows a depth map of the Siemens Star in different static 

positions without motion. In our experiments, one of the 

fan blades of the Siemens star is marked with an Infrared 

(IR) reflective marker that artificially creates a hole in the 

fane blade. Our results show that when motion blur occurs, 

the number of zero-value pixels that are present in the IR 

reflective marker and that are near the edges of the fan 

blades increases. In addition, our results also show that 

when motion occurs, the surface area of the fan blades 

appeared reduced due to the increase in the number of zero-

value pixels and flying pixels. The reason for the reduction 

in surface area is because the motion of the fan blades 

causes pixels near the edges of the fan blades to become 

zero-value pixels or flying pixels that are no longer on the 

surface of the fan blade. As the speed of the Siemens Star 

increases, the amount of motion blur increases which also 

increases the number of zero-value pixels and flying pixels 

that are present near the edges of the fan blades in the depth 

map. Fig. 1 also shows examples of real motion blur at 

various speeds and their corresponding synthetic motion 

blur. As seen in Fig. 1, as the speed of the Siemens Star 

increases (shown from left to right), the number of zero-

value pixels that are present in the IR reflective marker and 

that are near the edges of the fan blades increases. 

Table I shows the performance of the proposed 

synthetically generated motion blur process. For each 

speed, we evaluate the performance of our framework by 

comparing depth maps of the Siemens star in thirty-six 

different positions. As shown in Table I, as the speed of the 

Siemens star increases, the BF score decreases and the 

RMSE increases. Our results show that our framework for 

synthetically generating radial motion blur is able to 

achieve an average BF score of 0.8864, an average RMSE 

of 8.7135, and an average RMSE ratio of 0.0090 over a 

range of speeds between 60 RPM and 135 RPM.  

    
TABLE I. Synthetic motion blur performance 

 

Speed BF score RMSE RMSE Ratio 

60 RPM 0.9492 8.0917 0.0079 

100 RPM 0.8758 9.3353 0.0088 

135 RPM 0.8342 11.2900 0.0104 

 

 
 

Fig. 1. Siemens Star with without motion (top), synthetic 

motion blur (middle), real motion blur (bottom) at 60 

RPM (left), 100 RPM (center), and 135 RPM (right) 

 

Fig. 2 shows a comparison between the depth map of 

our box without motion, the depth map of the static box 

with synthetic motion blur, and the depth map of the box in 

motion. Our results show that our framework for 

synthetically generating linear motion blur is able to 

achieve an average BF score of 0.8401, an average RMSE 

of 10.5410, and an average RMSE ratio of 0.0101.  
 

 
 

Fig. 2. Static box (left), synthetic motion blur (middle), 

and real linear motion blur (right) 
 

4. Conclusions 

 

In this work, we present a framework that can be used for 

synthetically generating motion blur in depth maps that 

mimics the behavior of real motion blur that is observed 

using a ToF sensor. This work introduces a probabilistic 

model to predict the location of zero-value pixels that are 

present when motion blur occurs. This work also introduces 

a process for evaluating the performance of a motion blur 

filter for depth maps by comparing a depth map that has 

synthetic motion blur to a depth map with real motion blur. 

One of the limitations in our framework is that our 

framework relies on the presence of zero-value pixels in the 

static depth map to create new additional zero-value pixels 

in our depth map with synthetic motion blur. Future work 

can work to incorporate more sophisticated models to 

generate zero-value pixels.  
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