
Synthetically Generating Motion Blur in a Depth Map from Time-of-

Flight Sensors

Bryan Rodriguez, Xinxiang Zhang, and Dinesh Rajan

Department of Electrical and Computer Engineering

Southern Methodist University, Dallas, TX 75205, USA

brodrigu@smu.edu, xinxiang@smu.edu, rajand@smu.edu

Abstract

Motion blur is a common artifact that affects imaging

systems. Synthetically creating motion blur in two-

dimensional (2D) images is a well-understood process and

has been used to develop deblurring systems. However,

there are no well-established techniques for synthetically

generating motion blur within three-dimensional (3D)

images since the behavior of motion blur within 3D images,

such as depth maps and point clouds, is not as well-

understood. In this work, we develop a simple and accurate

framework to synthetically generate motion blur within

depth maps that accurately captures the behavior of the

real motion blur that is encountered using a Time-of-Flight

(ToF) sensor. We develop a probabilistic model that

predicts the location of invalid pixels that are typically

present within depth maps that contain real motion blur.

We also introduce a method to quantify the performance of

a synthetic motion blur filter for depth maps based on a

comparison between a depth map with synthetic motion

blur and a depth map with real motion blur. Our results

indicate that our framework is able to achieve an average

Boundary F1 (BF) score of 0.8864 for invalid pixels for

synthetic radial motion blur and a BF score of 0.8401 for

synthetic linear motion blur.

1. Introduction

With the growth in the number of 3D sensor technologies

in the market, understanding their behavior is critical to

widespread adoption. This work presents a methodology

for synthetically generating motion blur within a depth map

that mimics the real motion blur observed when using a

ToF sensor. The proposed models can be used by

researchers to develop more effective and adaptive

deblurring techniques that work in applications including

autonomous vehicles, drones, robotics, and logistics. In

these applications, a ToF sensor or objects within the field

of view of the ToF sensor may be moving with respect to

each other. The relative movement between the ToF sensor

and other objects can create a motion blur effect which

increases the number of invalid pixels and flying pixels that

are present in a depth map and distorts the appearance of

objects in the depth map captured by a ToF sensor [1].

Synthetically creating motion blur in 2D images is a

well-understood process [2] [3]. In traditional 2D images,

motion blur appears as a softening of edges within a 2D

image along a motion path. The motion blur in depth maps

is distinct from 2D images because of the presence of

invalid pixel values and flying pixels which do not exist in

2D image motion blur. To our knowledge, there are no

well-established techniques for synthetically generating

motion blur within 3D images such as depth maps and point

clouds. In previous works, motion blur in depth maps has

been observed as a baseline for comparing different 3D

sensing technologies or for evaluating the performance of

various deblurring algorithms [1][4]. However, these

works typically focus on how to minimize the effects of

motion blur and they do not provide any insight about how

to synthetically create motion blur. For example, radial

motion blur is captured using both a Kinect v1 sensor that

uses structured light and a Kinect v2 sensor that uses ToF

[4]. For each Kinect sensor, a depth map is generated for a

flat fan blade, a Siemens Star, while it is static and while it

is rotating and the distortion between the static and rotating

depth maps is computed. The focus of reference [4] is

simply to compare the amount of distortion that is present

in the depth maps generated by the different Kinect sensors.

 In this work, we introduce a probabilistic model that is

used to predict the location of invalid pixels, also referred

to as zero-value pixels, that are present when motion blur

occurs. Several types of motion blur exist such as radial

motion, linear motion, out-of-focus blur, or a combination

of blur types [5]. Capturing 3D images of motion blur in a

real-world environment is challenging because the motion

and the speed of objects are not always easily controllable.

Using our framework, a synthetic radial or linear motion

blur can be applied to depth maps of static objects. If

desired, the blurred depth map can then also be converted

into a point cloud that will include the applied motion blur.

The ability to synthetically generate motion blur in 3D

images enables future works to create test benches for

evaluating algorithms for deblurring this motion blur.

In summary, this work contributes to the state of the art

by: 1) Demonstrating a framework that can be used to

synthetically generate motion blur in depth maps that

mimics the appearance and behavior of real motion blur

that can be observed using a ToF sensor, 2) Developing a

probabilistic model that predicts the location of invalid

pixels that are typically present in depth maps that contain

a real motion blur, and 3) Quantifying the performance of

a motion blur filter for depth maps based on a comparison

between a depth map with synthetic motion blur and a

depth map with real motion blur.

This paper is organized as follows. Section 2 discusses

our methodology for synthetically generating motion blur

within a depth map. Section 3 discusses our experimental

setup and results. Section 4 provides concluding remarks.

17th International Conference on Machine Vision Applications (MVA)
Fully Online, July 25–27, 2021.

© 2021 MVA Organization

P3-8

2. Methodology

Motion blur appears in depth maps as an increase in the

number of zero-value pixels (i.e. invalid pixels) and flying

pixels that are present near depth discontinuities within a

scene [1]. In general, ToF sensors determine depth values

based on the amount of time it takes for light that is emitted

from the ToF sensor to return to the ToF sensor after

reflecting off a surface within a scene. As an object moves

with respect to the ToF sensor, the light that is reflected

near the edges of the object may result in erroneous depth

values that do not accurately represent the surface of the

object. The increase in the number of zero-value pixels and

flying pixels results in fewer pixels on the surface of the

object which tends to distort the appearance of the object

within depth maps. For example, the surface area of an

object may reduce and the size of openings may increase.

In this work, we propose an approach for synthetically

applying radial motion blur and linear motion blur to the

depth map of a static object. After synthetically applying

the motion blur to the depth map, the resulting depth map

mimics the appearance and behavior of a depth map that

would be observed if the object were moving. The key steps

to the proposed methodology are as follows. 1) The ToF

sensor is configured to generate a depth map for an object.

In this configuration, both the ToF sensor and the object are

static. 2) After generating the depth map, we apply either a

radial blur filter or a linear blur filter to the depth map. The

radial blur filter and the linear blur filter are both

implemented using 2D spatial filters that are applied to the

depth map similar to how motion blur filters are

traditionally applied to 2D images. In our experiments, the

motion blur filter is applied to a user-defined region of

interest within the depth map. 3) We then use our

probabilistic model to predict the locations of new zero-

value pixels within the depth map. The probabilistic model

predicts whether a pixel location within the depth map

should have a zero value after the motion blur filter is

applied based on its neighboring pixels. 4) The motion

blurred depth map is then updated to include the zero-value

pixels predicted using the probabilistic model.

2.1. Motion blur filters

In our work, the initial depth map, 𝐼(𝑥, 𝑦), is first obtained

from the TOF sensor where (𝑥, 𝑦) identifies pixel locations

within the depth map. A region-of-interest is then defined

within the depth map. In the case of the radial motion blur

filter, a circular region-of-interest is defined around our

object. The depth map that is obtained from the TOF sensor

includes a combination of zero-value and non-zero value

pixels. The zero-value pixels correspond to invalid pixels

where the TOF sensor was unable to determine a depth

value. The non-zero pixels correspond to locations where

the TOF sensor was able to determine depth value. Before

we apply our motion blur filter, we first perform a bilinear

interpolation process to assign the zero-value pixels a depth

value based on their neighboring pixels as defined in

Section 2.2. This interpolation process allows the motion

blur filter to be applied more accurately to the depth map.

After interpolation, we apply a 2D spatial filter to the

depth map to simulate the appearance of a radial motion

blur. In this work, we use a 2D spatial filter from JH Labs

[5] to average neighboring pixels to apply a radial blur filter

to our depth map. The radial motion blur filter blurs the

depth map by blurring each pixel of the depth map along a

tangential direction to the path of the target pixel. The input

parameters for the radial motion blur filter are a spinning

center, a spinning radius, and a rotation angle. In this

experiment, the filtering center is denoted as the pre-

defined center location of the spinning object. The spinning

radius is set as the diagonal length of the region-of-interest,

where the depth map pixels are only filtered (blurred)

within the region-of-interest. The rotation angle is

proportional to the spinning speed of the object and can be

selected based on the desired level of simulated speed. A

linear motion blur filter can be applied to the depth map

using a process similar to the process described in this

section. The linear motion blur filter input parameters are

the linear blur direction and a blur distance. The linear blur

direction is the motion path of the object within the depth

map. In our experiments, the direction is set to a horizontal

direction that simulates the object moving horizontally

across a surface. The blur distance is proportional to the

moving speed of the object and can be selected adaptively.

2.2. Probabilistic model for predicting zero-value

pixels

In this section, we develop a probabilistic model that

predicts the location of zero-value pixels in the motion-

blurred depth map based on values of neighboring pixels.

When real motion blur occurs in the depth map from a TOF

sensor, there is an increase in the number of zero-value

pixels that are present near discontinuities and edges in the

depth map. As the speed of the object increases, the number

of zero-value pixels also increases. To predict the locations

of new zero-value pixels our probabilistic model uses three

assumptions. 1) The number of neighboring pixels that are

in the window for predicting the final state of a pixel is

proportional to the speed of the object. 2) For each pixel,

the neighboring pixels in the window with the same state

(i.e. 0 or 1) will contribute more to the final state of the

pixel. The final state of the pixel is also more likely to be

affected by neighboring pixels with a state of zero because

zero-value pixels tend to appear in clusters. 3) The pixels

with an initial state of zero are likely to remain in state zero.

We first convert the original depth map into a binary

depth map, 𝐼𝑏(𝑥, 𝑦) , by assigning non-zero value pixels

within 𝐼(𝑥, 𝑦) to a state of one and assigning zero-value

pixels within 𝐼(𝑥, 𝑦) to a state of zero. Using our

probabilistic model generally involves iteratively selecting

a root pixel, 𝑅 , where 𝑅 ∈ 𝐼𝑏(𝑥, 𝑦) , within the defined

region-of-interest that was defined in Section 2.1 and then

using the probabilistic model to predict whether the root

pixel should be a zero-value pixel in the motion-blurred

depth map based on its neighboring pixels. After generating

the binary depth map, we then iteratively select root pixels

from within our region-of-interest. For each selected root

pixel, we define a neighborhood window whose length is

proportional to the speed of the object. Thus, a larger

window length is used to simulate faster moving objects.

The window is orientated to be along the motion path of the

object. When the direction of motion for the object is

known, the window is positioned to include neighboring

pixels that precede the root pixel in the direction of motion.

The window height is set to a fixed value, for simplicity. In

this work, the window height was set to a value of one pixel

down. When the direction of motion for the object is

unknown or random, the window is positioned to include

neighboring pixels that both precede and follow the root

pixel. The window height does not change based on the

direction of motion. Instead, the window is oriented to be

tangential to the direction of motion. As an example, for a

given root pixel, we use the defined window to identify a

group of neighboring pixels, [𝑁0, 𝑁1,, …, 𝑁𝑛], where [𝑁0,

𝑁1,, …, 𝑁𝑛] ∈ 𝐼𝑏(𝑥, 𝑦).

After identifying the neighboring pixels for the root

pixel, we then apply our probabilistic model to the

identified neighboring pixels. We first define a potential

function that captures the interaction between the state of

the neighboring pixel and the state of the root pixel as:

𝜑(𝑠𝑅, 𝑠𝑁𝑖
) = {

(1 − |𝑠𝑁𝑖
− 𝑠𝑅|)𝑝𝑥 + |𝑠𝑁𝑖

− 𝑠𝑅|(1 − 𝑝𝑥), 𝑠𝑅 = 0

(1 − |𝑠𝑁𝑖
− 𝑠𝑅|)(1 − 𝑝𝑥) + |𝑠𝑁𝑖

− 𝑠𝑅|𝑝𝑥, 𝑠𝑅 = 1

(1)

where 𝜑(𝑠𝑅 , 𝑠𝑁𝑖
) is the potential function of the 𝑖𝑡ℎ

neighboring pixel, 𝑠𝑁𝑖
 is the state of the 𝑖𝑡ℎ neighboring

pixel, and 𝑠𝑅 is the state of the root pixel. In this study, 𝑝𝑥

is set to 0.9. We also consider the prior knowledge of the

root pixel by determining an initial probability as 𝑝𝑅 for the

root pixel. The probability 𝑝𝑅 is determined as:

𝑝𝑅 = {
𝑝𝑦 , 𝑠𝑅 = 0

1 − 𝑝𝑦, 𝑠𝑅 = 1
 (2)

where 𝑝𝑅 is the initial probability and 𝑠𝑅 is the initial state

of the root pixel. In our experiments, 𝑝𝑦 is set to 0.6.

Effectively, this process ensures that a higher probability

weight is used when a neighboring pixel has the same state

as the root pixel and when the root pixel has an initial state

of zero. We then predict a probability for each root pixel

based on the modeled potential function for each of its

neighboring pixels and the initial probability for the root

pixel. The predicted probability 𝑝�̂� is calculated as:

𝑝�̂� =
∑

𝜑(𝑠𝑅, 𝑠𝑁𝑖
) ∗ 𝑝𝑅

𝜌
𝑛
𝑖=0

𝑛

(3)

where 𝜌 is the normalization factor. We then assign the

probability to the root pixel that corresponds with the

likelihood that the root pixel will be a zero-value pixel in

the blurred depth map. This process is repeated to assign

probabilities for all of the root pixels within the region-of-

interest. We then apply a threshold to identify root pixels

that will become zero-value pixels in the blurred depth

map. The following expression describes how the threshold

is applied:

𝑠�̂� = {
0, 𝑝�̂� > 𝑡
1, 𝑝�̂� ≤ 𝑡

 (4)

where 𝑠�̂� is the predicted state for root pixel, 𝑝�̂� is the

predicted probability for the root pixel, and 𝑡 is the

threshold value which is set to 0.05. Note that the selection

of 𝑝𝑥, 𝑝𝑦, and 𝑡 is based on a separate validation set. Once

the zero-value pixels are identified, the blurred depth map

described in Section 2.1 is updated to include the predicted

zero-value pixels from the probabilistic model.

3. Experiments

3.1. Hardware configuration

In our experiments, we use a Kinect v2 [6] sensor to

generate depth maps for our experiments. This ToF sensor

has a resolution of 512x424 pixels with a framerate of 30

frames per second [7]. We used OpenKinect libraries [8] to

capture depth information and MATLAB 2020 [11] for

implementing our synthetic motion blur process. In our

experiments, we disabled both the Bilateral filter and the

Edge-aware filter for the Kinect v2 while capturing depth

information, to ensure raw depth information is captured

[9]. In our experiments, the Kinect v2 sensor is positioned

in a fronto-parallel configuration at a distance of 0.78m

away from the front surface of our object.

For our experiments with radial motion blur, we used a

custom radial motion device. Our radial motion device

includes a 381mm diameter Siemens Star with six flat fan

blades. The Siemens Star is attached to a 5v DC motor that

is controlled using an Arduino Uno. We collected data

while rotating the Siemens star between 60-135 RPM. For

our experiments with linear motion blur, we used a custom

linear motion device. Our linear motion device includes a

box that is attached to a linear rail system. The front surface

of the box includes three vertical openings that are each

about 76mm by 254mm in size.

In future works, these experiments can be extended to

include more complex scenarios with motion that is not

parallel to the image plane or with multiple objects.

3.2. Evaluating synthetic motion blur performance

Comparing a depth map with synthetic motion blur to a

depth map with real motion blur is challenging because the

position of objects may be different in both depth maps.

Hence, traditional direct comparisons between two depth

maps cannot be made without additional considerations to

ensure that the position of objects within the depth maps is

the same. In this work, we demonstrate a framework that

can be used to compare a depth map with a synthetic motion

blur to a depth map with a real motion blur. This process

involves capturing a series of depth maps of a static object

in different positions that would occur when the object is in

motion. We then generate a depth map of the object in

motion with real motion blur. The depth maps of the static

object are then compared to the depth map with the real

motion blur to identify the closest match based on the

position of the object. After identifying the depth map of

the static object that best matches the depth map of the

object in motion, we then apply our synthetic motion blur

to the depth map. The depth maps can then be directly

compared to quantify the similarity between the two depth

maps. This process enables a direct comparison between a

depth map with synthetic motion blur and a depth map with

real motion blur since we are able to align the position of

an object before making the comparison. The ability to

compare a depth map with synthetic motion blur and a

depth map with real motion blur enables future works to

evaluate the performance of other motion blur algorithms.

To evaluate the performance of the zero-value pixel

predictions from the probabilistic model described in

Section 2.2, we use the Boundary F1 (BF) score with an

error tolerance of 2 pixels [10]. Also, to evaluate the

performance of non-zero value pixels from Section 2.1

after updating the blurred depth map with the predicted

zero-value pixels, we are using a root mean-square error

(RMSE) between the synthetic motion blur depth map and

the real motion blur depth map and an RMSE ratio between

their difference and the real motion blur depth map.

3.3. Motion blur experiment results

Fig. 1 illustrates binary depth maps that show the locations

of zero-value pixels and non-zero value pixels. In Fig. 1,

the zero-value pixels are shown in white and the non-zero

value pixels are shown in black. The first row of Fig. 1

shows a depth map of the Siemens Star in different static

positions without motion. In our experiments, one of the

fan blades of the Siemens star is marked with an Infrared

(IR) reflective marker that artificially creates a hole in the

fane blade. Our results show that when motion blur occurs,

the number of zero-value pixels that are present in the IR

reflective marker and that are near the edges of the fan

blades increases. In addition, our results also show that

when motion occurs, the surface area of the fan blades

appeared reduced due to the increase in the number of zero-

value pixels and flying pixels. The reason for the reduction

in surface area is because the motion of the fan blades

causes pixels near the edges of the fan blades to become

zero-value pixels or flying pixels that are no longer on the

surface of the fan blade. As the speed of the Siemens Star

increases, the amount of motion blur increases which also

increases the number of zero-value pixels and flying pixels

that are present near the edges of the fan blades in the depth

map. Fig. 1 also shows examples of real motion blur at

various speeds and their corresponding synthetic motion

blur. As seen in Fig. 1, as the speed of the Siemens Star

increases (shown from left to right), the number of zero-

value pixels that are present in the IR reflective marker and

that are near the edges of the fan blades increases.

Table I shows the performance of the proposed

synthetically generated motion blur process. For each

speed, we evaluate the performance of our framework by

comparing depth maps of the Siemens star in thirty-six

different positions. As shown in Table I, as the speed of the

Siemens star increases, the BF score decreases and the

RMSE increases. Our results show that our framework for

synthetically generating radial motion blur is able to

achieve an average BF score of 0.8864, an average RMSE

of 8.7135, and an average RMSE ratio of 0.0090 over a

range of speeds between 60 RPM and 135 RPM.

TABLE I. Synthetic motion blur performance

Speed BF score RMSE RMSE Ratio

60 RPM 0.9492 8.0917 0.0079

100 RPM 0.8758 9.3353 0.0088

135 RPM 0.8342 11.2900 0.0104

Fig. 1. Siemens Star with without motion (top), synthetic

motion blur (middle), real motion blur (bottom) at 60

RPM (left), 100 RPM (center), and 135 RPM (right)

Fig. 2 shows a comparison between the depth map of

our box without motion, the depth map of the static box

with synthetic motion blur, and the depth map of the box in

motion. Our results show that our framework for

synthetically generating linear motion blur is able to

achieve an average BF score of 0.8401, an average RMSE

of 10.5410, and an average RMSE ratio of 0.0101.

Fig. 2. Static box (left), synthetic motion blur (middle),

and real linear motion blur (right)

4. Conclusions

In this work, we present a framework that can be used for

synthetically generating motion blur in depth maps that

mimics the behavior of real motion blur that is observed

using a ToF sensor. This work introduces a probabilistic

model to predict the location of zero-value pixels that are

present when motion blur occurs. This work also introduces

a process for evaluating the performance of a motion blur

filter for depth maps by comparing a depth map that has

synthetic motion blur to a depth map with real motion blur.

One of the limitations in our framework is that our

framework relies on the presence of zero-value pixels in the

static depth map to create new additional zero-value pixels

in our depth map with synthetic motion blur. Future work

can work to incorporate more sophisticated models to

generate zero-value pixels.

5. REFERENCES

[1] M. Lindner, and A. Kolb. (2009). Compensation of Motion

Artifacts for Time-of-Flight Cameras. Lect. Notes Comput. Sci..

5742. 16-27. 10.1007/978-3-642-03778-8_2.

[2] R. C. Gonzalez and R. E. Woods, Digital image processing.

New Jersey: Parson, 2008.

[3] R. C. Gonzalez, R. E. Woods, and S. Eddins, Digital Image

Processing Using MATLAB. New York: Gatesmark, 2010.

[4] H. Sarbolandi, D. Lefloch, and A. Kolb. “Kinect range

sensing: Structured-light versus Time-of-Flight Kinect.” Comput.

Vis. Image Underst. 139 (2015): 1-20.

[5] Java Image Processing, JH Labs, Accessed on December 11,

2020, Available: http://www.jhlabs.com/ip/blurring.html.

[6] A. Kolb, E. Barth, R. Koch, and R. Larsen. (2010). Time-of-

Flight cameras in computer graphics. J. Computer Graphics

Forum, 29, 141-159.

[7] J. Jiao, L. Yuan, W. Tang, Z. Deng, and Q. Wu. (2017). A

Post-Rectification Approach of Depth Images of Kinect v2 for 3D

Reconstruction of Indoor Scenes. ISPRS International Journal of

Geo-Information. 6. 349. 10.3390/ijgi6110349.

[8] OpenKinect, OpenKinect Project, Accessed on November 25,

2020, Available: https://openkinect.org/wiki/Main_Page.

[9] A. Cheng and H. Harrison, “Touch Projector,” MIT. Accessed

on November 25, 2020, Available: https://tinyurl.com/bx3pfsxt.

[10] G. Csurka, D. Larlus, and F. Perronnin. "What is a good

evaluation measure for semantic segmentation?" Proceedings of

the British Machine Vision Conference, 2013, pp. 32.1–32.11.

[11] MATLAB. (2020). version 9.9.0. 1467703 (R2020b). Natick,

Massachusetts: The MathWorks Inc.

