
Output augmentation works well without any domain knowledge

Shu Eguchi
Fukuoka University

eguchi.math@gmail.com

Ryo Nakamura
Fukuoka University

sd210501@cis.fukuoka-u.ac.jp

Masaru Tanaka
Fukuoka University

sieger.web@gmail.com

Abstract
Data augmentation is a method to compensate a

lack of sufficient amount of training data by increas-
ing variations of the training data. It is also used
even when there is a huge amount of training data
to improve a generalization performance on the test
data. In this paper, we propose a new method, Output-
Augmentation (OA), which we use to improve the gen-
eralization performance without data augmentation. It
augments each original output (but not input) and pro-
duces an arbitrary number of outputs which average to
the original output. Updating the parameters is done
by using the gradient over both the original and the
augmented outputs. We conclude that the proposed
novel method strongly complements the existing ones
by showing empirical evaluations where we see improve-
ments of the generalization performance in the task of
image classification.

1 Introduction
In recent years, researches using Convolutional Neu-

ral Networks (CNN) for image data have succeeded in
achieving better performance than ever before in a va-
riety of tasks. It is also known that huge amount of
training data is required to achieve high performance
using CNN, though it is also true that there are many
tasks for which it is not possible to obtain huge amount
of training data. For this, a method called data aug-
mentation is commonly used. Based on knowledge of
the domain in which the data are lying, data augmen-
tation enables us to make up for a lack of the training
data. Furthermore, it allows us to improve the gener-
alization performance on test data by increasing vari-
ations of the training data even when the dataset is
huge.

We propose a new approach, which we call Output-
Augmentation (OA), to improve the generalization per-
formance without data augmentation. Specifically,
each original output from the dataset is augmented,

and an arbitrary number of outputs are randomly pro-
duced in a way that the mean of them equals to the
original output. Given the augmented outputs, our
learning process consists of two kinds of gradient de-
scents; After updating the parameters by the gradient
descent with respect to the original output, the param-
eters are further updated by that for the augmented
outputs (see Section 3 and Table 1). While data aug-
mentation needs to know the domain of the dataset,
our method does not need the knowledge and does im-
prove the generalization performance by adjusting only
one hyper-parameter.

In addition, there is a closely related work,
Sharpness-Aware Minimization (SAM) (Pierre Foret et
al. [1]), which performs multiple gradient calculations
for a single input to which we address later. In this pa-
per, we demonstrate effectiveness of OA by using image
classification for CIFAR-10 and CIFAR-100, which are
widely used in the field of computer vision. Specifically,
we conducted experiments using models without data
augmentation, with data augmentation (AutoAugment
(Ekin Dogus Cubuk et al. [2])), with SAM, and with
OA. We showed, through rigorous empirical studies,
that the proposed method improves the generalization
performance in image classification, and obtained the
following results.

• The proposed method significantly improves the
test accuracy of the model without using data　
augmentation.

• It is interesting to note that the proposed method
is effective for models without data augmentation,
but not so much for models with data augmenta-
tion.

The structure of this paper is organized as follows.
Section 2 gives an overview of related works (data aug-
mentation, SAM). Section 3 is devoted to describe the
parameter updating procedure in the OA method. Sec-
tion 4 presents empirical results of OA. Finally, conclu-
sions and future work are summarized in Section 5.

Table 1. Our approach: The case of K augmentations for each output.
Number of the parameters updating Input Output Parameter updating procedure

1 x h(L)(u(L)) wt+1 = wt − η∇wL|w=wt

2 None h(L)(u(L) + ε1) wt+1+1 = wt+1 − η∇wLaug1
|w=wt+1

...
...

...
...

1+K None h(L)(u(L) + εK) wt+1+K = wt+K − η∇wLaugK
|w=wt+K

17th International Conference on Machine Vision Applications (MVA)
Fully Online, July 25–27, 2021.

© 2021 MVA Organization

P3-6

2 Related Work

Data augmentation Data augmentation method
uses rotations, reflections and scalings to operate ef-
fects of geometric distortions and deformations of im-
ages. This method can be used to increase the number
of training data (A. Kwasigroch et al. [3]) and to bal-
ance the dataset (A. Kwasigroch et al. [4] and Wasow-
icz et al. [5]). As the result, the method has improved
the efficiency of training. The most common appli-
cations of this are histogram equalization, contrast or
brightness adjustment, white balance, sharpening, and
blurring (Galdran et al. [6]). These have been proven
to be faster, more reproducible (Galdran et al. [7]).
Moreover, there is a very powerful method called Au-
toAugment (Ekin Dogus Cubuk et al. [2]) that auto-
matically selects a suitable method from among those
introduced so far, and performs the method.

Sharpness-Aware Minimization (SAM) SAM
(Pierre Foret et al. [1]) is a new method that improves
the generalization of the model by simultaneously min-
imizing the loss value and the sharpness of the loss by
using the following objective function. We denote the
models parameters w.

min
w

LSAM
S (w) + λ∥w∥22 = min

w
max

∥ε∥p≤ρ
LS(w + ε) + λ∥w∥22,

where ρ ≥ 0, p ∈ [1,∞] . (1)

They have reported that p = 2 of the p-norm and the
neighborhood size ρ = 0.05 are often satisfactory.

The parameter updating procedure in SAM is per-
formed using two gradient calculations when data is
input once. To be more precise, the gradient at a max-
imum point of the loss function on the neighborhood of
the parameter before updating is used in the algorithm
of gradient descent, aiming that the loss function is flat
around the goal. By using SAM, they updated State of
The Art (SoTA) on nine image-classification datasets
including ImageNet and CIFAR.

The parameter updating procedure in our approach
is similar to SAM, though there are three differences.

• Similarities

– Given an input, a gradient different to the
gradient at the parameter before updating is
used.

– Both performs multiple gradient calculations
for parameter updating.

• Differences

– SAM updates the parameters with using a
gradient at a point slightly varied from the
parameter before updating, while OA does
with using the gradient of augmented output
instead of the original one.

– SAM needs to calculate a maximum point of
the loss function on a neighborhood of the
parameter before updating, while OA does
not; we just need to compute the gradient
of the output shifted randomly (augmented
output). Hence, SAM needs the knowledge
of local behavior of the loss function at each
step of the updating, while OA does not.

– SAM performs two gradient calculations for
an input; OA performs by using an arbitrary
number of gradient calculations for an input.

3 Approach

In this section, for neural networks, we will look at
the differences between the training method proposed
in this paper and traditional one.

We consider the following L-layer neural network
consisting of an input layer, hidden layers, and an out-
put layer.

Here, the training dataset is D = {(xi, yi)}Ni=1, the
input data is x, the parameters of the l-th layer are
w(l), the activation function of the l-th layer is h(l), and
the output from the l-th layer is z(l). Then the input
to the l-th layer can be written as u(l) = w(l)z(l−1) =
w(l)h(l−1)(u(l−1)). Since this method can be used for
all loss functions, we will use the mean square error in
this chapter for simplicity.

3.1 Updating Parameters with Using Original
Output

The output ŷ of the network

By using the input u(L) to the L-th layer (the
output-layer), the output ŷ for the input data x is ex-
pressed as

ŷ = h(L)(u(L))

= h(L)(w(L)h(L−1)(w(L−1)h(L−2)

(· · ·w(l+1)h(l)(wlh(l−1)(· · ·h(1)(x))) · · ·))). (2)

The loss function L
With using the output ŷ of the network and the true
class-label y of the input x, we define a loss function L
by

L =
1

2
∥ŷ − y∥22 =

1

2

∥∥∥h(L)(u(L)) − y
∥∥∥2
2
. (3)

Updating the parameters

wt+1 = wt − η∇wL(w)|w=wt

The parameter wt+1 is obtained by updating wt with
using the gradient ∇wL(w) and the learning rate η.
Then ∇wL(w) is calculated as

∇wL(w) =
∂L
∂w(l)

=
∂L
∂u(l)

∂u(l)

∂w(l)
= δ(l)z(l−1), (4)

where δ(l) := ∂L
∂u(l) = ∂L

∂u(l+1)
∂u(l+1)

∂u(l) . Then the value of

δ(l) at the j-th unit in the output-layer is

δ
(L)
j =

∂L
∂u

(L)
j

=
∂L
∂ŷj

∂h(L)(u
(L)
j)

∂u
(L)
j

. (5)

Traditional method of learning, such as Stochas-
tic Gradient Descent (SGD), updates parameters using
gradient (equations 4, 5) for each batch of input data.

3.2 Updating Parameters with OA

The output ŷaug of the network

By using the input u(L) to the L-th layer (the
output-layer), the output ŷaug is obtained from the
original output ŷ. The output ŷaug for the input x
is defined as

ŷaug = h(L)(u(L) + ε), |ε| ≪ 1

= h(L)(w(L)h(L−1)(w(L−1)h(L−2)

(· · ·w(l+1)h(l)(wlh(l−1)(· · ·h(1)(x))) · · ·)) + ε). (6)

In this study, we use the normal and uniform distribu-
tions, which are simple method to add the noise ε.

The loss function Laug

By using the true class-label y of the input x, we define
the loss function Laug as

Laug =
1

2
∥ŷaug − y∥22 =

1

2

∥∥∥h(L)(u(L) + ε)− y
∥∥∥2
2
. (7)

Updating the parameters
wt+1 = wt − η∇wLaug(w)|w=wt

The parameter wt+1 is obtained by updating wt with
using the gradient ∇wLaug(w) and the learning rate η.
Then ∇wLaug(w) is calculated as follows:

∇wLaug(w) =
∂Laug

∂w(l)
=

∂Laug

∂u(l)

∂u(l)

∂w(l)
= δ(l)augz

(l−1), (8)

where δ
(l)
aug :=

∂Laug

∂u(l) =
∂Laug

∂u(l+1)
∂u(l+1)

∂u(l) . Then the value

of δ
(L)
aug,j at the j-th unit in the output-layer is

δ
(L)
aug,j =

∂Laug

∂u
(L)
j

=
∂Laug

∂ŷj

∂h(L)(u
(L)
j + εj)

∂u
(L)
j

. (9)

The proposed training method for neural networks
uses both traditional parameter updating (subsec-
tion 3.1) and parameter updating using output aug-
mentation (subsection 3.2). Specifically, when a batch
size of data is input, parameters are updated according
to the algorithm described in subsection 3.1, and then

they are further updated along the procedure subsec-
tion 3.2 with using an arbitrary number of augmented
outputs without further data input. This procedures
continue until the parameters converge.

The algorithm of the traditional method of updating
parameters (Algorithm 1) and the proposed method of
updating parameters (Algorithm 2) can be summarized
in the following figures.

Input: Training dataset D = {(xi, yi)}, Loss function
L, Batch size B, Learning rate η > 0.

Output: Model trained
1: Initialize weights w0, t = 0;
2: for t = 1 to last-epoch do
3: Sample batch B = {(x1, y1), ...(xb, yb)};
4: Compute a gradient ∇wLB(w);
5: Update weights: wt+1 = wt − η∇wLB(w)|w=wt ;
6: end for

Algorithm 1. Traditional algorithm (SGD)

Input: Training dataset D = {(xi, yi)}, Loss function
L, Batch size B, Learning rate η > 0.

Output: Model trained with Output Augmentation
1: Initialize weights w0, t = 0;
2: for t = 1 to last-epoch do
3: Sample batch B = {(x1, y1), ...(xb, yb)};
4: Compute a gradient ∇wLB(w) of the batch ’s

training loss;
5: Update weights: wt+1 = wt − η∇wLB(w)|w=wt

;
6: for k = 1 to K do
7: Compute gradient ∇wLB,augk

(w);
8: Update weights:

w(t+1)+k = wt+k − η∇wLB,augk
(w)|w=wt+k

;
9: end for

10: end for

Algorithm 2. Output-Augmentation: In the case
of training by using K augmentations of outputs,
the parameters are updated (1 + K) times for a
single input.

4 Empirical Evaluation

In this section, we show results of experiments. In
the experiments, we use a variety of methods on the
model ResNet-18 (Kaiming He et al. [8]) applied to
image classification for CIFAR-10 and CIFAR-100.

In order to confirm the effectiveness of the proposed
OA, we compare two situations where one is without
data augmentation and the other is with that. Specif-
ically, “Basic”: ResNet-18 without data augmentation
and “AA”: ResNet-18 with AutoAugment. The meth-
ods to be applied are SGD, SAM and OA. In addition,
all experiments are performed under the same number
of data and the same learning rate η = 0.01.

Since the number of parameter-updating for each
mini-batch was different for each method, the num-
ber of epochs was adjusted so that the number of
parameter-updating would be the same. We compare

the highest accuracy for the test data up to the last
epoch. The following table 2 shows the experimen-
tal results on image classification for CIFAR-10 and
CIFAR-100.

Table 2. Test accuracy of image classification for CIFAR-10 and CIFAR-100: the exponent parameter p
in the p-norm and the neighborhood size ρ are hyper-parameters of SAM (equation 1). We generate K
augmentations of each output (Algorithm 2). I is the identity matrix, e is the unit vector, N (·) is the
normal distribution, and U [·) is the uniform distribution. All training data are input at each epoch. At
each epoch, the total numbers of parameter-updating are the same between SGD and SAM, but they don’t
coincide with that of OA; ‘epoch’ is not ‘iteration’ (the number of updating parameters).

Method CIFAR-10 CIFAR-100

Basic AA Basic AA

SGD (300epochs) 0.7765 0.8848 0.4697 0.6360

SAM (300epochs): p = 2, ρ = 0.05 0.8509 0.9156 0.5478 0.6950

OA (100epochs): K = 2, ε ∼ N (0, I) 0.8214 0.8789 0.5287 0.6289

OA (100epochs): K = 2, ε ∼ N (0, 3I2) 0.8411 0.8828 0.5509 0.6330

OA (100epochs): K = 2, ε ∼ U [−e, e) 0.8147 0.8880 0.5328 0.6277

OA (100epochs): K = 2, ε ∼ U [−3e, 3e) 0.8311 0.8922 0.5799 0.6391

SGD (600epochs) 0.7765 0.8921 0.4697 0.6490

SAM (600epochs): p = 2, ρ = 0.05 0.8597 0.9268 0.5537 0.7126

OA (100epochs): K = 5, ε ∼ N (0, I2) 0.8643 0.8891 0.5990 0.6372

OA (100epochs): K = 5, ε ∼ N (0, 3I2) 0.8750 0.8965 0.6209 0.6512

OA (100epochs): K = 5, ε ∼ U [−e, e) 0.8604 0.8933 0.5980 0.6391

OA (100epochs): K = 5, ε ∼ U [−3e, 3e) 0.8110 0.8858 0.6013 0.6400

SGD (1100epochs) 0.7765 0.8936 0.4697 0.6501

SAM (1100epochs): p = 2, ρ = 0.05 0.8708 0.9352 0.5585 0.7259

OA (100epochs): K = 10, ε ∼ N (0, I2) 0.8009 0.8769 0.5416 0.6338

OA (100epochs): K = 10, ε ∼ N (0, 3I2) 0.8621 0.8929 0.5946 0.6454

OA (100epochs): K = 10, ε ∼ U [−e, e) 0.8010 0.8694 0.4842 0.6167

OA (100epochs): K = 10, ε ∼ U [−3e, 3e) 0.8110 0.8858 0.5106 0.6266

For both CIFAR-10 and CIFAR-100 datasets, the
proposed method showed a significant improvement in
test accuracy without using data augmentation. On
the other hand, in the case where data augmentation
is also used, the test accuracy is not so bad for the
proposed method, but the SAM is even better. It is
interesting that OA improves the test accuracy signif-
icantly without data augmentation, while it does not
much if we perform data augmentation. There is a pos-
sibility that the use of AutoAugment for the input data
shifted it too far, as the shifted output for the shifted
input shifted it further.

It is also worth mentioning that the test accuracy
for AA with SGD is close to that of Basic with OA,
which suggests us that OA can be used as a substitute
for data augmentation if the hyper-parameters ε’s of
OA are well chosen. As a reason for the success of our
method, it is natural to assume that OA corresponds

to the shift of input by data augmentation.

5 Conclusions

In this paper, we proposed a novel method Output-
Augmentation (OA) to improve the generalization per-
formance on test dataset. Traditional data augmenta-
tion for images requires information about the domain
where the training data are lying, but not for OA.

In image classification for both CIFAR-10 and
CIFAR-100 datasets, we showed that the proposed
method significantly improves the test accuracy with-
out data augmentation. On other hand, it is interesting
that the our method does not improve the test accu-
racy much when data augmentation is also used. We
expect that OA can be used as a substitute for tradi-
tional data augmentation.

References

[1] Pierre Foret and Ariel Kleiner and Hossein Mobahi
and Behnam Neyshabur, “Sharpness-aware Mini-
mization for Efficiently Improving Generalization,”
International Conference on Learning Representa-
tions (ICLR), 2021.

[2] Ekin Dogus Cubuk and Barret Zoph and Dandelion
Mané and Vijay Vasudevan and Quoc V. Le, “Au-
toAugment: Learning Augmentation Strategies from
Data,” Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
2019.

[3] A. Kwasigroch, A. Miko lajczyk, and M. Grochowski,
“Deep convolutional neural networks as a decision
support tool in medical problems-malignant melano
ma case study,” In: Mitkowski W., Kacprzyk J.,
Oprzȩdkiewicz K., Skruch P. (eds) Trends in Ad-
vanced Intelligent Control, Optimization and Au-
tomation. KKA 2017. Advances in Intelligent Sys-
tems and Computing, vol 577. Springer, Cham,
2017, pp.848-856.

[4] A. Kwasigroch, A. Miko lajczyk and M. Grochowski,
“Deep neural networks approach to skin lesions clas-
sification A comparative analysis,” 2017 22nd In-
ternational Conference on Methods and Models in
Automation and Robotics (MMAR), Miedzyzdroje,
2017, pp.1069-1074.

[5] Wa̧sowicz, M., Grochowski, M., Kulka, M.
, Miko lajczyk, A., Ficek, M., Karpieńko, K., &
Cićkiewicz, M., “Computed aided system for sep-
aration and classification of the abnormal erythro-
cytes in human blood,” in Bio photonics-Riga 2017,
2017, vol.10592, p.105920A.

[6] Adrian Galdran and Aitor Alvarez-Gila and Maria
Inês Meyer and Cristina López Saratxaga and Teresa
Araujo and Est́ıbaliz Garrote and Guilherme Aresta
and Pedro Costa and Ana Maria Mendonça and
Aurélio J. C. Campilho, “Data-Driven Color Aug-
mentation Techniques for Deep Skin Image Analy-
sis,” ArXiv Prepr. ArXiv170303702, 2017.

[7] J. Wang and L. Perez, “The effectiveness of data
augmentation in image classification using deep learn-
ing,” Technical report, 2017.

[8] Kaiming He and Xiangyu Zhang and Shaoqing Ren
and Jian Sun, “Deep Residual Learning for Image
Recognition,” Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recogni-
tion (CVPR), 2016.

