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Abstract

In recent years, Deep Neural Network (DNN) ap-
proaches for computer vision tasks have shown tremen-
dous promise and potential. However, they are vulner-
able to data that are carefully crafted with adversarial
attacks, which can cause mis-prediction and raise secu-
rity risk to real-world deep learning systems. To make
the DNN-based approaches more robust, we propose a
defense strategy based on High Frequency Loss Varia-
tional Autoencoder Decoder (VAE) and randomization
among multiple post-VAE classifiers’ predictions. The
main contributions of the proposed defense framework
are: 1) a new adversarial defense framework that fea-
tures randomization process to effectively mitigate ad-
versarial attacks; 2) reconstruction of high-quality im-
ages from adversarial samples with the VAE enhanced
with spatial frequency loss; 3) use of a Bayesian process
to jointly combine the collective voting results and the
targeted classifier’s prediction for final decision. We
evaluate our approach and compare it with existing ap-
proaches on CIFAR10 and Fashion-MNIST data sets.
The experimental study shows that the proposed method
outperforms existing methods.

1 Introduction

In recent years, DNNs have delivered unprecedented
results in many computational learning tasks, such as
video [9], image [12] and audio [11], etc. However, these
methods have been shown to be susceptible to adver-
sarial attacks [5, 26], where a certain number or all
pixels in an image are carefully perturbed, such that
the classifier is fooled to give wrong prediction.

Various defense mechanisms have been proposed
to mitigate the adversarial attacks on images[1, 24,
22, 15]. These mechanisms can be broadly classi-
fied into three different categories: (1) the training
process mixes adversarial images with original images
as the training set to make the classifier more ro-
bust to adversarial attacks[5, 26]; (2) use high-level
latent features from DNNs for clustering either to do
anomaly detection or to classify the category[6, 18]; (3)

use DNNs to reconstruct the images using generative
networks[21, 25, 7].

Most of the previous work assumes that only the
classifier is targeted during an adversarial attack,
and the whole defense framework is unknown to the
adversary[1, 24, 22, 15]. But if an adversary has an
access to the entire defense framework, he can take the
advantage of it to attack the entire defense framework.
In order to mitigate such attacks, our approach com-
bines both randomization and discretization through
VAE and post-VAE collective voting such that an ad-
versary could not easily use back-propagation to attack
the entire framework, and at the same time, the quality
of reconstructed images is improved by using Spatial
Frequency Loss (SFL). At the end, given the targeted
classifier’s prediction on the reconstructed images and
the post-VAE voting result, the final prediction is given
by the Bayesian update using the above two results as
evidence.

2 The Proposed Method

2.1 Variational Autoencoder Decode (VAE)

VAE features: 1) an Encoder, P (Z|X), that maps
given input data, X, to the distribution of the unob-
served hidden variables (the latent features) Z; 2) a
Decoder, P (X|Z), that approximates the reverse pro-
cess, converting the hidden features (with probability
distribution P (Z)) back to dimension of the observable
data. Our method uses parameterized approximators
Qθ(Z|X), Pω(X|Z) and Pψ(Z) to model the encoder,
decoder and hidden feature distribution, respectively.
By optimizing the evidence lower bound (ELBO) of
VAE, the decoder is encouraged to reconstruct images
with similar distribution as the training input:

(θ∗, ω∗, ψ∗) = argmax
(θ,ω,ψ)∈Θ×Ω×Ψ

Ez∼Qθ(Z|X) logPω(X|Z)

−DKL [Qθ(Z|X) ‖ Pψ(Z)]
(1)
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Maximizing Ez∼Qθ(Z|X) logPω(X|Z) is equivalent
to generating images that are as close as the observ-
able data, given the latent features Z which is gener-
ated by the learnt encoder Qθ(Z|X). The loss function
to measure the difference is denoted as reconstruction
loss, Lrec, and the form we adopt is the Mean Square
Error (MSE). Thus, the parameters can be calculated
[23]:

ω∗ = argmin
ω∈Ω

Ez∼Qθ(Z|X)

[
(Pω(X|Z)−X)

2

2

]
(2)

In equation (1), the marginal distribution of hidden
features, Pψ(Z), is selected based on different situation
of interest [17]. We adopt zero-centered independent
Gaussian distribution, in which its mean and variance
are the parameters. We empirically choose the dimen-
sion k for the hidden feature Z, such that the outputs
from Qθ(Z|X) (the mean vector and variance vector)
have the same dimension as that of Pψ(Z). We denote
DKL [Qθ(Z|X) ‖ Pψ(Z)] as regularization loss, Lreg.

2.2 Spatial Frequency Loss (SFL) for VAE

To learn high spatial frequency features such as
sharper edges in the reconstructed images, it is im-
portant to guide the learning with extra loss function
that reflects the difference in the sharpness of edges be-
tween an input and an output. Laplacian of Gaussian
(LoG) is an edge detection technique [20], which not
only detects brightness intensity changes in an image
but also detects the intensity changes at different scale.

We adopt LoG kernel to extract edges for both X
and X∼:

LoG = − 1

πσ4

[
1− x2 + y2

2σ2

]
e−

x2+y2

2σ2 (3)

where, x and y are the pixel coordinates of the gray-
scaled image and σ is the scale that controls the fine-
ness of the edges to be detected.

Thus, in order to achieve the reconstruction of de-
tailed features, a spatial frequency loss, LSFL, between
input X and reconstruction X∼ is added to the total
loss when training the VAE. Overall, the loss functions
for training VAE are as follows:

L = Lrec + Lreg + LSFL

Lrec = Ez∼Qθ(Z|X)

[
(Pω(X|Z)−X)

2

2

]
Lreg = DKL [Qθ(Z|X) ‖ Pψ(Z)]

LSFL = ‖Conv(Xgray, LoG)− Conv(X∼gray, LoG)‖2
(4)

2.3 Post-VAE Classification and Voting

The proposed approach introduces randomization
and discretization in decision making process. All post-

VAE classifiers have different structures and hyperpa-
rameters, and they are trained using reconstructed im-
ages X∼ from VAE. After images are reconstructed
from VAE, R out of M post-VAE classifiers are ran-
domly selected to classify X∼. A majority vote is taken
from the R predictions. Thus, although an adversary
has access to VAE and all post-VAE classifiers and it
can craft strong adversarial samples using the informa-

tion in f
(i)
c (fV AE(x)), i = 1, 2, ...,M , the adversarial

sample crafted using f
(i)
c (fV AE(x)) does not work as

effectively as it will on f
(j)
c (fV AE(x)) when i 6= j, be-

cause f
(i)
c and f

(j)
c have different network structures

and parameters, which affect the noise crafted by the
adversary.

2.4 Combine VAE Reconstruction and Voting
Result Using Bayesian Update

The image reconstructed by the VAE, X∼, is first
fed into the original classifier for prediction, and this
prediction is used as evidence eA for later use in
Bayesian update. Then the most likely class given by
the collective voting process is used as the second evi-
dence eB in Bayesian update.

For general multi-evidence cases, we denote the
marginal likelihood of evidence with P (EA = eA),
P (EB = eB), ..., P (EM = eK), where eK is the Kth
type of evidence we could find from the data. The
posterior from the Bayesian update is calculated and
is used as the final prediction for an unknown input
image:

p(cj |eA, eB , ..., eM )

=
p(eA|eB , ..., eM , cj)...p(eM |cj)p(cj)∑
j p(eA|eB , ..., eM , cj)...p(eM |cj)p(cj)

∝
j
p(eA|eB , ..., eM , cj)...p(eM |cj)p(cj)

(5)

3 Experiments and Analysis

3.1 Experimental Setup

To evaluate the performance of the proposed defense
mechanism and compare it with other existing meth-
ods, we conducted extensive experiments on two data
sets, Fashion-MNIST [27] and CIFAR10 [2].

For adversarial attacks, Fast Gradient Sign Method
(FGSM)[5], Basic Iterative Method (BIM) [13], Pro-
jected Gradient Descent (PGD) [19], Carlini and Wag-
ner (CW) Method [3] were used in evaluating our
method.

Various defense mechanisms have been proposed
during recent years [1, 18, 21, 24, 22, 16, 4], and we
compared our defense mechanism with two state-of-
the-art methods that are more relevant to our work,
Defense-VAE [15] and Defense-GAN [24].



The VAE’s structure is shown in Table (1) in Ap-
pendix A. For post-VAE classifiers, we adopted three
different types of networks (Residual-Networks [8],
Wide-Residual-Networks [28] and DenseNet [10]). By
adjusting the structure parameters, 4 different struc-
tures of each type were created (12 in total) and used
as post-VAE classifiers for voting. The structures of
all 12 post-VAE classifiers are shown in Table (3,4,5)
in Appendix A and the implementation of the classi-
fiers is from a public Github repository [14]. The Con-
ditional Probability Tables (CPT) for P (eA|x∼) and
P (eB |eA, x∼) for Bayesian update were constructed by
calculating the statistics using the entire training set.

3.2 Reconstructed Image Quality using SFL

Because reconstructed images are used for classifi-
cation, we compare the reconstruction quality of VAEs
that are trained with and without LSFL in Figure (1).
Under four different adversarial attacks and various
amounts of perturbation, we observed that the images
reconstructed from VAE trained with LSFL have lower
L2 norm difference from original clean images for all
four adversarial attacks under wide range of perturba-
tion levels, except when ε ≥ 0.15 from FGSM, which
is also observed from a drop in the accuracy of post-
VAE classifiers after the ε = 0.15 under FGSM attack
in Figure (2).

Figure 1: Comparison of VAEs’ reconstruction quality
of CIFAR10 data set (L2 norm between clean images
and reconstructed images from different adversarial at-
tacks and perturbation levels). The magenta line shows
the reconstruction quality of VAE trained with LSFL,
while the blue line shows that of without LSFL.

3.3 White-box Attacks on Classifiers

To test the proposed defense mechanism and com-
pare the defense performance with other methods over
a wide spectrum of adversarial perturbations, we tested
the defense mechanisms against white-box attacks on
three target classifiers (model A, B and C shown in
Table (2) in Appendix A). Four different attacks were
used: FGSM, CW, BIM and PGD at various perturba-
tion levels, and the results are shown in Figure (2). For
each test, 5000 adversarial samples were crafted using

the testing data set and the accuracy for each perturba-
tion level is the average accuracy after defense methods
are implemented on classifiers A, B and C.

We observe from Figure (2) that the proposed
method outperforms all the other methods by improv-
ing extra 25% accuracy on average across a wide range
of adversarial perturbation levels for CIFAR10. On
Fashion-MNIST, the proposed defense method gives
better accuracy (a 5% margin on average) than other
existing methods, and its accuracy on Fashion-MNIST
remains above 93% under various adversarial attacks
and perturbation levels. Figure (2) also shows that
our defense method maintains about 91% accuracy on
clean images for CIFAR10 and about 99% accuracy for
Fashion-MNIST when there is no attack.

3.4 Attacks When Adversary Has An Access to
Entire Defense Mechanism

We compared our method with other methods un-
der the attacks on the entire defense framework. For
Defense-GAN, we connected a trained generator to a
well-trained classifier. By doing so, the input z for the
generator can be tampered by an adversary who knows
the entire framework fc(fgen(z)). For Defense-VAE,
we connected a well-trained VAE to a classifier which
has been trained using those reconstructed images from
the same VAE. By doing so, the adversary can use the
information fc(fV AE(x)) to launch a second wave of at-
tacks. For the proposed method, each post-VAE clas-
sifier is connected to the well-trained VAE to form an
end-to-end network, and the adversary uses this end-
to-end network to craft adversarial samples. During
the test time, those adversarial samples that are gen-
erated by different end-to-end networks are randomly
selected and fed into the proposed defense framework.

Results in Figure (3) show that the proposed defense
mechanism achieves an additional 10% better accuracy
on CIFAR10 data set, and an additional 10% better
accuracy on Fashion-MNIST data set than that of the
existing methods on FGSM and CW. All three defense
mechanisms’ performance gets worse under this new
attack, which means that attackers’ knowledge about
the entire defense framework affects its robustness.

We also observe that, in between the proposed
method and Defense-GAN, although the adversary
uses the similar information, fc(fV AE(x)), to generate
attacks on both of them, the proposed method has a
better performance. This extra gain in accuracy largely
benefits from the use of collective voting results as ex-
plained in the next subsection.

3.5 Collective Voting

The voting of randomly selected post-VAE classifiers
(here referred as VNN) gives extra increase in accuracy
(3% ∼ 5%) on the top of averaged individual VNN’s
performance as shown in Figure (2).



Figure 2: Defense methods comparison under FGSM, BIM, PGD and CW on CIFAR10(Top) and Fashion-
MNIST(Bottom). The dash line is for Defense-VAE and dash-dot line is for Defense-GAN. The solid lines show
the break-down performance of the proposed methods, including: average individual post-VAE classifier’s ac-
curacy(orange), original classifier’s accuracy on reconstructed images(blue), accuracy after voting and Bayesian
update(dark red) and the accuracy without defense(green).

To take a closer look at how voting bene-
fits the classification, we calculated how much
mis-prediction get recovered through voting pro-
cess. Among each VNN, the total wrong predic-
tion is nwrong pred/vnn, which contains both recov-
erable predictions and non-recoverable predictions:
ncan be recovered + nnot recovered. The recovery rate is:
αrecovery = ncan be recovered

nwrong pred/vnn
. Figure (4)(Left) plots the

recovery rate along different numbers of VNNs used for

Figure 3: Different defense mechanisms’ performance
under 4 different adversarial attacks on the entire de-
fense framework.

Figure 4: (Left) Recovery rate from voting. (Right)
False prediction overlapping rate.

voting. Different colors represents different perturba-
tion levels of FGSM attack on CIFAR10 (we observed
similar pattern for other attacks, too). We observed
that as the number of VNN increases, less extra gain
on recovery rate is received from each additional VNN
used.

To explain this decreasing effect in extra gain, Fig-
ure (4) (Right) plots the VNNs’ wrong prediction over-
lapping rate among VNNs. It shows that the more
VNNs used, the less overlapping on their wrong predic-
tions, which indicates that there are more variations in
wrong prediction when more VNNs are used in predic-
tion. This is also because with different structures and
random initialization of parameters, each VNN forms a
slightly different classification boundary. But the slope
of overlapping rate is decreasing as the number of VNN
increases, which explains why the recovery gain from
using multiple VNNs is less prominent as more VNNs
are used for voting.

4 Conclusion

An innovative adversarial defense mechanism was pro-
posed, which introduces a process with randomiza-
tion and discretization, by combining results from SFL
VAE and post-VAE collective voting using Bayesian
update. We conducted extensive experiments to com-
pare its performance with two well-known existing de-
fense mechanisms against 4 different adversarial at-
tacks. The results show that our method outperforms
by additional 25% increase in accuracy on CIFAR10
and by 5% on Fashion-MNIST. The proposed method
maintains over 93% accuracy on Fashion-MNIST across
a wide range of adversarial perturbation levels. For at-
tacks on the entire framework, our method consistently
outperforms the existing methods by about a 10% mar-
gin on accuracy for Fashion-MNIST and an average of
5% for CIFAR10.
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5 Appendix A

5.1 VAE Architecture

The VAE’s architecture used in the proposed de-
fense method is shown in Table 1. Except the Decoder
needs to be adjusted for the dimension difference be-
tween Fashion-MNIST and CIFAR10, the rest of the
structure is same for the experiments on both data sets.

5.2 Classifier Structures

The classifier models that were used in comparison
experiments between different defense mechanisms are
shown in Table 2.

The post-VAE classifiers are created using the
implementation from the Github repository [14].
Residual-Networks [8], Wide-Residual-Networks [28]
and DenseNet [10] were used to create the post-VAE
classifiers. Table 3, 4 and 5 show the parameters that
were used to create the 12 different post-VAE classifiers
(the rest of the parameters were set with their default
values).



Encoder Decoder
Conv(64,4,2)+BN+ReLU Dense(4096)+ReLU
Dropout(0.2) Reshape(4,4,256)
Conv(128,4,2)+BN+ReLU ConvTrans(512,4,2)+ReLU
Dropout(0.2) ConvTrans(256,4,2)+ReLU
Conv(256,4,2)+BN+ReLU ConvTrans(128,4,2)+ReLU
Dropout(0.2) ConvTrans(64,4,2)+ReLU
Conv(512,4,2)+BN+ReLU ConvTrans(3,4,2)+ReLU
Dropout(0.2)
Flatten
Dense1(1024), Dense2(2014)

Table 1: Network structure of VAE used for de-noising and image reconstruction.

A B C
F-MNIST CIFAR10 F-MNIST CIFAR10 F-MNIST CIFAR10
Conv(64,5,1) Conv(32,3,1) Dropout(0.2) Conv(32,3,2) Conv(128,3,1) Conv(32,3,1)
ReLU ELU,BN Conv(64,8,2) ReLU,BN ReLU ELU,BN
Conv(64,5,2) Conv(32,3,1) ReLU Conv(32,3,2) Conv(64,5,2) Conv(32,3,1)
ReLU ELU,BN Conv(128,6,2) ReLU,BN ReLU ELU,BN
Flatten Pooling(2) ReLU Pooling(2) Flatten Pooling(2)
Dropout(0.25) Dropout(0.2) Conv(128,5,1) Dropout(0.2) Dropout(0.25) Dropout(0.2)
Dense(128) Conv(64,3,1) ReLU Conv(64,3,2) Dense(0.25) Conv(64,3,1)
ReLU ELU,BN Flatten ReLU,BN ReLU ELU,BN
Dropout(0.5) Conv(64,3,1) Dropout(0.5) Conv(64,3,2) Dropout(0.5) Conv(128,3,1)
Dense(10) ELU,BN Dense(10) ReLU,BN Dense(10) ELU,BN
Softmax Pooling(2) Softmax Pooling(2) Softmax Pooling(2)

Dropout(0.2) Dropout(0.2) Dropout(0.2)
Conv(128,3,1) Conv(128,3,1) Dense(10)
ELU,BN ReLU,BN Softmax
Conv(128,3,1) Conv(128,3,1)
ELU,BN ReLU,BN
Pooling(2) Pooling(2)
Dropout(0.2) Dropout(0.2)
Dense(10) Dense(10)
Softmax Softmax

Table 2: Detailed network structures of different classifiers used for white-box attacks.

Params stack n epochs batch size
ResNet A 3 50 128
ResNet B 5 50 128
ResNet C 10 100 128
ResNet D 18 100 128

Table 3: Four different ResNet architectures used throughout the experiments.

Params depth growth rate epochs batch size
DenseNet A 50 12 100 128
DenseNet B 50 24 100 128
DenseNet C 100 12 100 128
DenseNet D 100 24 80 256

Table 4: Four different DenseNet architectures used throughout the experiments.

Params depth wide epochs batch size
WResNet A 8 8 80 128
WResNet B 16 8 80 128
WResNet C 16 10 80 256
WResNet D 28 10 80 256

Table 5: Four different Wide-ResNet architectures used throughout the experiments.


