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Abstract

This paper proposes calibration and stereo measure-
ment methods that enable accurate distance and uni-
form distribution of the distance error throughout imaging
ranges. In stereo measurement using two fisheye cameras,
the distance error varies greatly depending on the mea-
surement direction. To reduce the distance error, the pro-
posed method introduces an effectual baseline weight into
the stereo measurement using three or more fisheye cam-
eras and their calibration. Accurate distance is obtained
because this effectual baseline weight is the optimum weight
in the maximum likelihood estimation. Experimental results
show that the proposed methods can obtain an accurate dis-
tance with a 94% reduction in error and make the distribu-
tion of the distance error uniform.

1 Introduction

Stereo cameras have been widely commercialized as dis-
tance sensors for autonomous vehicles, drones, and robots,
and fisheye cameras that widen a field of view (FOV)
are used for many applications. However, accurate dis-
tance measurement throughout imaging ranges with fisheye
stereo is a significant challenge because the distance error
varies from a small value to infinity depending on the mea-
surement direction with respect to the baseline.

For reducing the variation in the distance error depend-
ing on the measurement direction with respect to the base-
line, multi-baseline stereo measurement is effective when
the FOV is relatively narrow. In contrast, when a fisheye
camera with a wide FOV is used, as in Fig. 1, the closer
the effectual baseline length in the measurement direction
is to 0, the closer the distance error is to∞. Since the con-
ventional multi-baseline stereo technique does not have a
mechanism for suppressing such a large error, the measure-
ment error becomes huge.

Considering large errors is also important for calibration.
However, in the conventional calibration methods, all points
are used equally without considering a large error, so the
calibration error becomes huge when a fisheye camera is
used. Therefore, to minimize the variation in the distance
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Figure 1: Concept diagram of proposed calibration and
measurement methods using effectual baselines.

error, we propose calibration and stereo measurement meth-
ods that introduce effectual baseline weights. The proposed
methods can obtain an accurate distance and make the error
distribution uniform because this effectual baseline weight
is the optimum weight in the maximum likelihood estima-
tion.

The major contribution of this paper is that our proposed
methods can obtain uniform distance errors over the entire
measurement direction for three or more fisheye cameras.
Our work is the first to achieve uniform error distribution
over the entire measurement direction in practical use case.

2 Related works

Stereo measurement and calibration methods for narrow-
view cameras are well-established. In contrast, there has
been relatively little work on fisheye stereo measurement,
which remains a significant challenge.

17th International Conference on Machine Vision Applications (MVA)
Fully Online, July 25–27, 2021.

© 2021 MVA Organization

P3-11



Stereo measurement: Stereo measurement is based on
triangulation [6]. Theoretically, it is difficult to measure an
object with large incident angles, so narrow-view cameras
are generally used for stereo measurement. Three or more
cameras are typically utilized to improve the measurement
accuracy narrow-view cameras. Okutomi et al. [9] proposed
a pioneering approach to multi-baseline stereo that merges
stereo pairs based on each sum of squared errors. Addition-
ally, to select the best stereo pair among cameras, Amat et
al. [1] presented a method with weights of uncertainty based
on radius errors. In contrast to narrow-view cameras, with
fisheye cameras it is essential to consider large incident an-
gles causing large distance errors. However, conventional
methods do not work well when they look at the large inci-
dent angles near the extension of the baseline.

Camera calibration: Stereo measurement methods re-
quire the specific camera parameters. The numerous camera
calibration methods that have been proposed so far are clas-
sified into methods for monocular cameras [12, 15], binoc-
ular cameras [2, 3, 8, 10, 11, 13, 14, 16, 17], and three or
more cameras [4, 5].

As a typical example of a calibration method that uses
a narrow-view camera, Tsai [12] developed a method that
minimizes the reprojection errors in image coordinates.
This is importance because calibration methods for monoc-
ular cameras lack the relation of cameras in stereo measure-
ment. To optimize fisheye stereo cameras, calibration meth-
ods using two steps, i.e., separated optimization for intrinsic
and extrinsic parameters, have been proposed [3, 11]. How-
ever, large errors near the extension of the baseline have not
been taken into account. To reduce errors and/or improve
the ranges of view, three or more cameras are typically used
for the measurement. Findeisen et al. [4] presented an ap-
proach for surveying an indoor scene that uses three omnidi-
rectional cameras to estimate the full hemispherical depth.
However, similar to the stereo camera case, objects near the
extension of the baseline causes large errors in this method.

As discussed above, it has been difficult for previous
works to perform precise measurements over the entire
measurement direction using fisheye cameras.

3 Proposed Method

This section describes our proposed methods of stereo
measurement and calibration using baseline weights to im-
prove the measurement accuracy using multiple cameras.

3.1 Stereo measurement using baseline weights

Our stereo measurement method uses baseline weights
to reduce distance errors including large incident angles by
merging the points of multiple stereo pairs. The weights
minimize the variance of distance errors depending not on
actual baselines but on effectual ones.

3.1.1 Definition of effectual baselines

Let us define the effectual baseline that represents the ef-
fectual length in triangulation. As shown in Fig. 2 (top), we

𝑑𝑑𝑒𝑒
2

𝜓𝜓

∆𝜓𝜓

2∆𝐿𝐿

B

M P RQ𝐿𝐿

A

P

M

B

A′

𝑑𝑑𝑒𝑒

𝐿𝐿𝐵𝐵
𝐿𝐿𝑀𝑀

Camera B

Camera A Effectual baseline

Actual baseline

𝐿𝐿𝐴𝐴

Figure 2: Illustration of the effectual baseline de and error
estimation. Top: Definition of effectual baseline. Bottom:
Error estimation using the effectual baseline.

assume that camera A and camera B are located at point A
and point B, respectively, to measure the 3D point P . The
actual baseline between camera A and camera B isAB. Al-
though the baseline is AB, A′B is the effectual baseline for
measuring point P under the condition that LM is the bisec-
tor of the angle at P , and A′B is orthogonal to MP . Note
that M is located at the middle of A′B, and the optical axes
of camera A and camera B are LA and LB , respectively. We
call A′B the effectual baseline de in this paper.

3.1.2 Error estimation of stereo measurement

The purpose of the error estimation is to describe the
relation among object distance, angle errors, and effectual
baselines under practical conditions. Using effectual base-
lines, we estimate the stereo measurement errors in Fig. 2
(bottom). We assume here that there are angle errors in
±∆ψ causing a position shift from P to Q or R. In this
case, MP and QR are L and 2∆L, respectively. The dis-
tance error ∆L against L for measuring P is estimated as

∆L ≈ (PQ+ PR)/2. (1)

Actually, the error distribution is a complex 3D shape de-
pending on the object coordinates. However, we regard the
errors as two representative points, i.e., near pointQ and far
point R, because the errors are small enough to be simpli-
fied. Under this assumption, we derive ∆L using L, ∆ψ,
and de based on Eq. (1) as follows

∆L = de/4 · (tan(ψ + ∆ψ)− tan(ψ −∆ψ))

=
de(tan2 ψ + 1) tan ∆ψ

2(1− tan2 ψ tan2 ∆ψ)
.

(2)

We regard tan2 ∆ψ as 0 since ∆ψ is a minute value. Equa-
tion (2) is rewritten as

∆L ≈ de/2 · (tan2 ψ + 1) tan ∆ψ

= 2L2/de · (1 + (de/L)2/4) tan ∆ψ.

(3)



Practically speaking, de/L is a minute value since L is
significantly longer than de. Under the assumption of
(de/L)2 = 0, we thus obtain the simple relation shown in

∆L ≈ 2L2/de · tan ∆ψ. (4)

Finally, we assume that tan ∆ψ = ∆ψ and ∆ψ is constant
in Eq. (4). We simply describe the relation among ∆L, L,
and de as

∆L ≈ 2L2∆ψ/de ∝ L2/de. (5)

It is important for fisheye cameras to take the effectual base-
line de with L2 into account because the range of de in fish-
eye cameras is wider than that in narrow-view cameras. In
addition, the relation between the distance error and the ef-
fectual baseline length shows that short-baseline cameras
tend to have the large errors described in Eq. (5).

3.1.3 Effectual baseline weights

To improve the measurement accuracy, we use effectual
baselines for weights of merging nC2 points (n is the num-
ber of cameras). The effectual baseline weight w satisfies
the maximum likelihood that minimizes the variance of dis-
tance errors to obtain the accurate distance shown in

wi,j = d2e,i,j , (6)

where i and j are the indices of 3D points and cameras,
respectively. If the effectual baseline is approximately 0,
we remove the stereo pair to avoid adding infinity errors.
Further, we define the normalized weight to merge the 3D
point written in

w′i,j =
wi,j∑

nC2

j=1 wi,j

. (7)

Each 3D point is thus measured using the normalized
weight, as

Pi =
nC2∑
j=1

w′i,jUi,j , (8)

where Pi is the 3D point of index i using nC2 pairs of cam-
eras, and Ui,j is a measured 3D point of index i using a
stereo pair index j by standard stereo measurement. There-
fore, we use Pi as a measured point taking effectual base-
lines into consideration in both real-time stereo measure-
ment and the calibration described next.

3.2 Calibration using effectual baselines

Here we describe our efficient calibration method for
multiple cameras over the entire measurement direction.
Our method appropriately optimizes camera parameters
owing to effectual baseline weights.

3.2.1 Objective function for multiple cameras

For multiple stereo measurement using three or more
cameras, we define the objective function using 3D mea-
surement errors directly to optimize camera parameters
based on Eq. (5), as

Jmulti =

N∑
i=1

||Pi − P̂i||2
L2
i

, (9)

where N is the number of calibration data, Pi is the merged
point in Eq. (8), and P̂i is the ground-truth world coordinate
of the calibration data. Each calibration error is normalized
using the square distance.

3.2.2 Objective function for stereo cameras

We define the objective function Jstereo using effectual
baselines for stereo cameras since there is only one mea-
sured point in each calibration data. Effectual baselines
are used for weighting calibration errors instead of merg-
ing measured points, as

Jstereo =

N∑
i=1

d2e,i ||Pstereo,i − P̂i||2
L2
i

, (10)

where Pstereo is the standard stereo measurement point.
Thanks to looking at effectual baselines, our weighting

method enables uniform error distribution in fisheye stereo
cameras. Note that our method can be applied for any cam-
eras owing to its objective function independent of camera
models.

4 Experiments

This section presents that the effectiveness of our weight-
ing method using effectual baselines.

4.1 Experimental setup

To focus on camera geometry, we used ground-truth
image coordinates of calibration points instead of stereo
matching for evaluation. For the real-time depth estimation,
semi-global matching [7] was performed for stereo match-
ing.

Quad-fisheye camera: We developed quad-fisheye
cameras with short baselines for the semispherical stereo
measurement shown in Fig. 1. Quad-fisheye lenses are
placed 15 mm apart on a 25-mm square base and capture
synchronized images in 1280 × 960 pixels. The diameter
and focal length of each fisheye lens is 9 mm and 0.88 mm,
respectively. The projection is based on stereographic pro-
jection with a large FOV (~190◦). For non-directional mea-
surement and long baselines, the vertexes of a regular poly-
gon are appropriate camera positions.

Calibration targets: The ground truth of 1898 points in
the world coordinate was measured with a 3D laser scanner



Table 1: Comparison of RMS relative distance errors (%).

Calibration methods Merging measured points 4 cameras 3 cameras 2 cameras

Tsai’s method [12] center of gravity 18.25 24.40 39.41
our baseline weighting center of gravity 3.60 4.98 8.19
our baseline weighting our baseline weighting 1.13 1.41 –
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Figure 3: Relative distance errors using four cameras. The
conventional method and our method correspond to the
first and third rows in Tab. 1, respectively. Top: Errors
against the distance between the camera and ground truth
of each point. Bottom: Errors against the incident angle.

(FARO Focus3D X 130) and the corresponding image coor-
dinates were detected in sub-pixel precision. These points
consisted of a wide range of distances (0.5–5.2 m) and in-
cident angles (0◦–90◦).

4.2 Experimental results

To simplify errors, we used a relative distance error:

εi = ||Pest,i − P̂i||2 / Li, (11)

where i is the index of calibration point, Pest,i is the mea-
sured point, P̂i is the ground truth of 3D point, Li is the
distance between P̂i and the center of gravity among quad-
fisheye cameras. Note that we clamped errors with 100%
for the maximum error. The input of a set of image coordi-
nates was given using the same points for calibration.

Table 1 shows a comparison of the root-mean-square
(RMS) relative distance errors, where “3 cameras” indi-
cates that the lower-left, upper-left, and upper-right cameras
in Fig. 1 were used, and “2 cameras” indicates the upper-left
and upper-right cameras were used. In Tsai’s method [12],
each camera in the quad-fisheye was calibrated individu-
ally. Note that we extended Tsai’s method to adapt fish-
eye images. The extension substituted reprojection errors
on image sensor coordinates for image coordinates to ad-
dress ~90◦ incident angles. Since it was not necessary to
merge measured points in the two-camera case, we ignore

DepthRGB
2

| | | | | |
[m]0–1 3 5 10 20

Figure 4: Example of indoor depth estimation using our
quad-fisheye camera.

the merging measured points. As we can see, the distance
error was reduced by 94% when our baseline weighting was
used for both calibration and merging measured points. To
avoid stereo measurement with short effectual baselines, at
least three cameras are required. Thus, our method effec-
tively reduced errors in the cases of three or more cameras.

Additionally, we found that using our method resulted in
mean reprojection errors among cameras of 0.19, 0.23, and
0.18 pixels in the four-, three- and two-camera cases, re-
spectively. In contrast, the mean reprojection errors among
cameras using Tsai’s method [12] were 0.60, 0.70, and 0.57
pixels. Note that the reprojection error of a camera is the
RMS errors in a set of points. These results demonstrate
that our calibration achieves fewer reprojection errors than
when Tsai’s method [12] is used.

Figure 3 shows the error distribution against the distance
and angles. The conventional method had large errors com-
pared to ours. In particular, points with more than ~70◦

incident angles tended to have large errors. In contrast, our
method had small relative distance errors from 0◦ to 90◦

incident angles, i.e., over the entire measurement direction,
and achieved uniform error distribution even if the incident
angles were large.

The outdoor and indoor depth maps using our quad-
fisheye camera are shown in Figs. 1 and 4. The shapes of
depth could accurately represent objects such as cars and
persons, though the depth maps had some errors and noise.

5 Conclusion

To obtain an accurate distance and uniform distance er-
ror throughout imaging ranges using multiple fisheye cam-
eras, we proposed baseline weighting for calibration and
stereo measurement. Experimental results showed that our
methods achieved a uniform error distribution and reduced
the RMS relative distance errors by 94% using four fisheye
cameras.
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