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Abstract

In this paper we introduce a new camera localization
strategy designed for image sequences captured in chal-
lenging industrial situations such as industrial parts in-
spection. To deal with peculiar appearances that hurt
standard 3D reconstruction pipeline, we exploit pre-
knowledge of the scene by selecting key frames in the se-
quence (called as anchors) which are roughly connected
to a certain location. Our method then seek the lo-
cation of each frame in time-order, while recursively
updating an augmented 3D model which can provide
current camera location and surrounding 3D structure.
In an experiment on a practical industrial situation,
our method can localize over 99% frames in the input
sequence, whereas standard localization methods fail to
reconstruct a complete camera trajectory.

1 Introduction

Determining a location of the camera is one of the fun-
damental task in computer vision, supporting a grow-
ing need of 3D reconstruction such as Structure from
Motion (SfM) and Simultaneous Localization and Map-
ping (SLAM) [1–4]. They are also directly applicable
for a video-based navigation system that suggests the
temporal user location from a sequential image series.

Such navigation is especially beneficial for some in-
dustrial robotics scenarios, where an operator often
cannot directly observe the scene [5, 6]. In specific, for
an industrial parts inspection, a thin diameter probe
(industrial borescope) is inserted to the inner of a
product and inspects its damages or defects. Whereas
other auxiliary sensors [7,8] often are not available for
practical borescopes, a pure vision-based localization
can still be helpful to guess defective locations while
associating to their appearances from an image sen-
sor [6]. However, common image-based camera local-
ization techniques [2, 9, 10], which simultaneously esti-
mate the camera location and surrounding 3D struc-
ture, often fail to reconstruct a valid model due to pe-
culiar appearances in industrial situations.

In this paper, we attempt to handle such challeng-
ing industrial parts inspection scenarios. First, to deal
with special appearance in the industrial scene, we em-
ploy the 3D structure-based approach [9–14] for local-
ization. Instead of reconstructing cameras for all re-

lated images at once, we efficiently localize input im-
ages by preparing a pre-constructed 3D model present-
ing the targeted scene and registering new images to
the model. Second, to stably localize all of video frames
captured during inspection, we design our system to
register cameras in time-order while incrementally up-
dating 3D model, which makes it easier to find loca-
tions of consecutive frames. Also, we employ a new
technique based on a typical key-frame (called as an-
chor) in the input sequence that is connected to a cer-
tain object in the target scene and contributes to a
stable image registration. We finally test our system in
one specific inspection scenario for an industrial prod-
uct and validates its performance in the challenging
situation.

Related works. For the input of image series,
SfM [1, 2] and SLAM [3, 4, 15, 16] are the well known
techniques to reconstruct their 6-dimensional cam-
era poses together with surrounding 3D structure.
Whereas most SLAM methods assume a sequential im-
ages input and obtain a camera trajectory in time-
order, SfM in a recursive manner [17–20] has also been
developed to provide a temporal 3D reconstruction in
a real-time processing. Since they originally obtain a
scale-indeterminate 3D model, several works also es-
timate cameras in a real-scale by using auxiliary sen-
sors [7, 8, 21–23] or adjusting the model with a known
property of the scene [6,9,10]. When a pre-constructed
3D model of the targeted scene is also available, cam-
era poses can be further accurately estimated by regis-
tering images directly to the model [9–13]. Kroeger et
al. [24] proposed a video registration scheme to an SfM
model. Our method also registers image sequences to
an SfM model while incorporating a known property of
the scene to deal with challenging industrial scenario.

2 Video frame localization via anchor view
detection and recursive 3D reconstruction

Fig. 1 shows the proposed camera localization pipeline
for sequential images. We assume a pre-mapped SfM
model consisting of 3D scene points and pre-captured
(database) cameras as the reference information for the
targeted scene (reference model). For the input of an
image sequence consisting of consecutive image frames,
we first find a key frame connected to a specific location
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Figure 1. The whole camera localization pipeline for a sequential image series. We start to reconstruct
cameras from one specific anchor frame capturing the characteristic location in the targeted scene. Then we
localize remaining frames by incrementally updating an augmented model while registering images neighbor
to the previously reconstructed camera.

in the reference model (Sec. 2.1). Next we sequentially
localize remaining images via an SfM-like reconstruc-
tion scheme (Sec. 2.2) which recursively update a 3D
model by registering new images. The reconstruction
will continue until all input images have been regis-
tered.

2.1 Anchor-based camera localization

The major failure cases of reconstruction in industrial
scenarios are often be attributed to the failure of local-
ization due to the lack of texture, or highly frequent
objects such as standardized industrial parts. To deal
with these challenging appearance, we attempt to first
register some key frames (anchors) which locations can
be roughly determined by the pre-knowledge of the
targeted scene, e.g., capturing an unique object or a
marker in the scene. In the later section (Sec. 3) we
will describe our CNN-based anchor detector trained
for one specific situation of industrial parts inspection,
which constructs a subset of images potentially to be
anchors out of the input sequence. Please note that in
more general cases, such anchor frames can either be
specified manually, or automatically detected via any
object recognizer. The detected anchors can be rela-
tively easily registered to the reference model, and also
can be used as a spatial guide of other frames. As de-
scribed in the later section (Sec. 2.2), this anchor-based
approach is particularly beneficial to stably localize se-
quential images.

Anchor registration to the reference model. We
register the detected anchor images to the reference
model via a standard SfM scheme constructing a tem-
poral augmented model including anchors. We first
seek a subset of database images that share views with

anchors, and perform pairwise local feature matching
towards each of anchor images [25]. Consequent PnP
and point triangulation steps [2] obtain the initial cam-
era pose of anchors and 3D scene points corresponds to
the local features in these newly registered images. The
camera poses of anchors are finally refined by the bun-
dle adjustment [2] which minimizes the reprojection
errors of 3D scene points with respect to their local ob-
servations in the images. Please note that in this step
we freeze parameters of database cameras and existing
scene points in the reference model, so this refinement
does not affect the consistency of the augmented model
and referenced SfM model presenting the map informa-
tion of the scene.

2.2 Recursive 3D reconstruction for sequential
images

After registering anchor frames to the SfM model, we
start to determine the location of all images by incre-
mentally register each of frames, while updating the
augmented model.

Feature matching towards spatial and tempo-
ral neighbors. The reconstruction begins from the
consecutive frame of the earliest anchor frame, and
continue in the time-stamp order. First we perform a
spatially-guided feature matching that seek correspon-
dences between local observations in the current frame
and cameras in the current augmented model. Instead
of the location knowledge used in Sec. 2.1, this time we
exploit the most recently registered camera of the input
sequence as a more precise location prior. As in anchor
registration, we collect a set of database images that
are spatially neighbor to the recent camera and per-
form pairwise local feature matching towards the cur-



Figure 2. A rough sketch of the inspection for a
combustion chamber.

rent frame. Additionally, we select 20 best database
images via image retrieval [26] and also match them
towards the current frame.

To increase the number of local connectivity of
the current frame towards the augmented model, we
also perform a temporally-guided feature matching
that matches the current frame towards the neighbor
frames, which have highly relevant appearances thus
are easy to match. We make a set of N neighbor frames
that have previously been registered to the model and
match them towards the current frame. In our ex-
periments, we set N as 25 frames, which can remain
a precise reconstruction with a controllable cost, but
please be sure that this setting should be determined
for each specific scene while also considering the video
frequency.

Recursive camera localization for image se-
quence. From the set of local feature matches, we
can also extract correspondences between local features
and the existing 3D scene points. If the sufficient num-
ber of these 2D-to-3D matches exists, the 6D camera
pose of the current frame can be obtained by solving
the Perspective-n-Points problem [27,28]. Then we tri-
angulate new 3D scene points seen from the current
frame, which can also help to register the next frame.

We finally perform a bundle adjustment [29] to re-
fine the newly added scene points and cameras. As in
anchor registration, we freeze 3D points and cameras
existing in the reference model, and refine cameras for
all input frames and new 3D points while minimizing
the reprojection errors of the model. For efficiency,
we perform this refinement every 10 new frames have
been registered. After all, we get a new temporal SfM
model that provides camera location of the recent in-
put frames, which is used to register next consecutive
frames. The system continues to register new frames
until the end of the input video, and finally obtains an
SfM model including 6D cameras of all input frames.

[mm]

Anchor

Figure 3. The test environment and image
samples. Top: Gray dots represent the 3D ref-
erence model of the combustion chamber in a jet
engine, while red dots are the ground-truth cam-
era location of the test sequence. Bottom: Video
frames in the test sequence.

Table 1. Localization results.

Method #Cameras MAE Median error
[mm] [mm]

Single image 1,450 (63.6%) 1.34 0.60
Ours 2,247 (98.6%) 2.44 0.42

3 Experiments

Test scene: The inside of a jet engine. We test
our localization system during the inspection for a com-
bustion chamber in an aircraft jet engine [30]. The
inspection is usually done by inserting an industrial
borescope through an insert point as to go around the
chamber (c.f. Fig. 2). Then the inspector observes the
inside of the chamber via a monocular camera of the
borescope, while pulling out the borescope. We capture
three image sequences during independent trials, two as
the database sequences for constructing the initial SfM
model, and the other as the query sequences for testing.
The reference model is constructed by COLMAP [2],
resulting in a model consisting of 5,107 cameras and
1.5M scene points. Separately, we gather the ground-
truth cameras of query sequences by constructing an-
other SfM model for the query and one of the database
sequence. The reconstructed query cameras are regis-
tered to the reference model by estimating the similar-
ity transform between the shared frames [31], resulting
in 2,254 query frames annotated with the ground-truth
location, out of 2,280 query frames (c.f. Fig. 3).
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Figure 4. Reconstructed camera trajectory. Each camera is colored by its positional error (mm).

CNN anchor detector. According to the trajectory
of the borescope illustrated in Fig. 2, the beginning
of video often captures the insert point (and the in-
serted borescope itself), which has a special appearance
compared to other part of the chamber (c.f. Fig. 3).
Therefore we build a CNN classifier to detect such
unique frames as anchors. The model is based on
ResNet18 [32] architecture, while discarding last two
layers (conv4 and conv5, namely) and modifying the
final fully connected layer to obtain an one dimensional
score of the input image to be an anchor. We manu-
ally annotate 518 database images (roughly 10% of all
frames) which see the insert point and train the model
by minimizing a standard margin loss [33]. In the test-
ing phase, we feed each of input frames to the trained
model, and gather a subset of 32 anchor frames.

Implementation. We implement our method mainly
based on COLMAP [2], a well-known SfM tool. We
modify bundle adjustment [29] so that we can freeze the
reference model. The anchor detector is implemented
using PyTorch library.

Results. As the main comparison opponent to
our method, we also evaluate a baseline localization
method for single image: For each input frame, we
gather 20 similar database images via image retrieval
and match their local features. Using these correspon-
dences, the camera pose of each frame is independently
estimated by solving PnP.

Tab. 1 reports the statistics of the localized cam-
eras. Our method can localize further more cameras
than the single image method, while remaining the ac-
curacy. Fig. 4 also plots the localized cameras in the
model. Due to the challenging scene nature and partly
incomplete reconstruction of the reference model, sin-
gle image method (a) fails to find locations of the lat-
ter part of the input sequence. On the other hand, our
method (b) achieves a continuous camera trajectory
within acceptable errors, which prove the dominance
of our approach using multiple sequential images to
support each other location.

As an alternative approach which performs on-the-
fly scene reconstruction [9, 10], we also construct an

SfM model via standard incremental SfM implemented
by COLMAP [2], using only input frames. The model
is then registered to the scene by estimating the sim-
ilarity transform between reconstructed cameras and
their ground-truth location. This approach, however,
reconstructs only part of the scene seen from few im-
ages (Fig. 4 (c)). This result clearly points the fact that
the well known camera tracking approach that simulta-
neously estimates 3D structure and camera locations,
including “popular” SLAM approaches, actually can-
not deal with severe appearances such as in industrial
scenes, whereas our method can still obtain an accurate
camera trajectory while exploiting the pre-constructed
3D model.

4 Conclusion

In this paper, we have proposed a new camera localiza-
tion system designed for an image sequence captured in
the challenging industrial scene. Our method starts re-
construction from a reliable anchor frame that captures
an unique object in the scene, and sequentially regis-
ter neighbor frames while exploiting recently registered
frames as the location prior for the new frame. In the
experiment on an industrial parts inspection scenario,
the proposed method achieves an accurate and stable
camera trajectory whereas other methods can localize
only a part of the sequence. We believe our recur-
sive 3D reconstruction anchored to any static object in
the scene, is also beneficial for localization problems in
many robotics situations, where the operator can per-
ceive the current location and the surrounding environ-
ment through the augmented 3D model obtained dur-
ing the reconstruction. One of the future work would
be to achieve a real-time processing for a sequential
image stream from a camera, so that the system can
provide the augmented model in a practical timing.
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