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Abstract

Open-set recognition is a problem in which classes
that do not exist in the training data can be presented
at test time. Existing methods mostly take a multi-
task approach that integrates N-class classification and
self-supervised pretext tasks, and they detect outliers by
examining the distance to each class center in the fea-
ture space. Instead of relying on the learning through
reconstruction, this paper explicitly uses distance learn-
ing to obtain the feature space for the open-set problem.
In addition, although existing methods concatenate fea-
tures from multiple tasks to measure the abnormality,
we calculate it in each task-specific space independently
and merge the results later. In experiments, the pro-
posed method partially outperforms the state-of-the-art
methods with significantly fewer parameters.

1 Introduction

Closed-set recognition relies on an implicit assump-
tion that the data presented during testing is covered
by the training data. However, this assumption is un-
realistic for applications that require interaction with
the real world, such as autonomous driving. Open-
set recognition, therefore, addresses the problem that
unknown data can be presented in addition to known
data. It is an N+1-class classification problem, where
N known classes and one unknown class must be identi-
fied at testing, while no information about the unknown
class is available at training.

To solve this problem, how to obtain feature repre-
sentations that are effective for known classes but also
for unknown classes becomes an issue. To obtain such
good features, existing studies have regularized classi-
fication networks using other tasks such as reconstruc-
tion or other self-supervised pretext tasks. However, it
is still not obvious what kind regularization is the most
effective. In addition, a network using reconstruction
requires a decoder to generate images from features,
which increases computational cost and memory usage.

In this paper, we show that it is possible to obtain
useful feature representations by using supervised con-
trastive distance learning [8] without learning recon-
struction. Supervised contrastive learning prepares two
images with different data augmentations, and they
are learned to become closer or farther apart in fea-
ture space depending on their labels. Since images
with same labels deformed by different data augmen-
tations are learned to have the same features, the fea-
ture space may be more robust to such deformations
and may have a more adequate representation to de-
tect anomaly than the features learned with reconstruc-
tion. We also present that calculating the anomaly

score in each task-specific space and merging the score
later by averaging is better than concatenating the
features from multiple tasks and calculate the score
in a unified space. Experiments show that the pro-
posed method partially outperforms the state-of-the-
art methods with significantly fewer parameters on
standard open-set/out-of-distribution data sets such as
SVHN and Tiny-Imagenet.

2 Related work and preliminaries

Open-set recognition In anomaly detection, au-
toencoders (AEs), variational autoencoders (VAEs),
and generative adversarial nets (GANs) are trained
to minimize the reconstruction error [19, 1, 7]. They
assume the reconstruction error will be large for un-
known classes; however, if the AEs are trained with
many classes and generalized well, they may be able
to reconstruct the unknowns as well. Another way to
solve open-set classification is to extend Softmax and
use 1 − max(yi) as the anomaly score for the class i,
where yi is the output from Softmax [2]. We will refer
to this method as Softmax*. It assumes that the con-
fidence will not be high for unknown classes, while this
is often not valid [6].

OpenMax [2] utilizes the extreme value theory
(EVT) and shows how to calculate anomaly scores in a
feature representation learned by classification. Many
followers are more focused on how to obtain good rep-
resentation for being able to classify knowns and de-
tect outliers simultaneously. CROSR [21] and C2AE
[14] add AEs to classifiers in a multi-task learning
manner. CGDL [20] replaces AEs in CROSR [21] to
VAEs. GDFR [15] regularizes the classification space
by adding a self-supervised task to estimate rotations.
To enrich the input representation, an AE is attached
to the front end of the classifiers and they are cascaded.
OpenHybrid [22] replaces AEs with a Flow network
that can measure the likelihood of data in the latent
space. It is currently the best performing network be-
cause of its ability to represent long-tail distributions,
but the network size is large because of the flow net-
work.

Out-of-distribution detection (OoDD) The out-
of-distribution (OoD) detection and open-set recogni-
tion (OSR) deals with similar problems. The OSR tar-
gets to detect unknown classes in the same domain of
the training dataset, while OoDD focuses on the detec-
tion of samples from a different dataset/domain. Early
method is based on softmax thresholding, also show-
ing that the OoD samples may have high softmax val-
ues. In [11], they increase the difference between the
softmax value distribution of in-distribution (ID) and
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Figure 1. The proposed network. First, we pre-train an encoder by supervised
contrastive learning, and then we train the MLP for classification by freezing the
encoder’s weights. At test time, the anomaly score for each class is calculated using
the features from the two tasks and is converted to N+1-class probability.

Figure 2. While CROSR calcu-
lates the anomaly score from a sin-
gle vector that includes multiple fea-
tures, the proposed method takes the
weighted sum of the anomaly scores
calculated from each feature.

OoD samples by adding perturbation to the input and
adding temperature scaling to softmax. Gaussian dis-
tribution analysis is utilized to model the distribution
of each layer output of DNN [10]. The mahalanobis
distance between the feature maps of a test sample
and the closest class-conditional Gaussian distribution
are examined, and the confidence score is the weighted
average of the distances. Some studies utilized gener-
ative models trained on ID data with a view that the
likelihood of the OoD sample will be smaller than that
of ID samples, but a study shows that such hypothesis
is not valid [12]. Ren et al. [16] argue that this prob-
lem is due to the background that has an influence on
the likelihood of the semantic part of the image; thus,
an additional generative model focusing on the back-
ground is trained and an alternative metric is defined
to reduce the influence of the background.

Contrastive learning Contrastive learning explic-
itly learns distance so that positive samples (e.g., sam-
ples from the same class) become closer and vice versa.
It has been extensively studied in applications such
as face recognition and query-based similarity search.
Recently, it draws more attention since metric learn-
ing with self-supervision shows excellence in obtain-
ing well-generalized representation. Several metric-
learning loss are proposed, such as triplet, N-pair, max-
margin, and anchor-based methods, depending on the
sampling method of the data in the batch and the loss
design. The state-of-the-art methods in contrastive
learning are SimCLR [3], Moco [4], BYOL [5] etc.,
where two images (views) with different augmentations
are generated from a single image in a batch, and learn-
ing is performed in such a way that the distance be-
tween the pair becomes closer and the others becomes
farther apart. The contrastive loss is as follows:

L = −
∑
i∈I

log
exp

(
zi · zj(i)/τ

)∑
a∈A(i) exp (zi · za/τ)

, (1)

where zi is the feature of i-th sample, a is a sample in
A which is a set of negatives to zi. zj(i) is a positive to
i-th sample, and τ is a scaling factor.

Obtaining anomaly score Rather than simple
sofmax thresholding, we follow OpenMax [2] to calcu-
late anomaly scores. OpenMax is based on EVT [17],
which is one of the methods of meta-recognition. An
ordinary classification network is trained on the train-
ing dataset, and the activation vectors (AV) before the
softmax layer are extracted; namely, AV = f(x) where
x is a feature from the previous layer. The mean aver-
age vectors (MAV) for each class and the distances be-
tween MAV and AV for each class are calculated. The
distances are fitted to the Weibull distribution using
EVT. During testing, the distance calculated from the
MAV and AV of the input image is examined and the
degree of anomaly for each class is calculated; the de-
gree of anomaly is weighted by the probabilities of the
N classes, and their weighted sum becomes the anomaly
score. In Softmax, each class confidence yi is obtained
as follows:

yi = Softmax(AV )i =
exp(AVi)∑N
j=1 exp(AVj)

. (2)

In OpenMax,

wi = EVT(||AV −MAVi||2) (1 ≤ i ≤ N), (3)

ŷi =

{
yiwi (i ≤ N),∑N

i=1 yi(1− wi) (i = N + 1).

In CROSR [21], OpenMax is extended to use interme-
diate outputs of another network in addition to AV:

c = concat([AV, z1, z2, ...]) (4)

wi = EVT(||c− ci||2) (1 ≤ i ≤ N)

3 Proposed Method

Utilizing supervised contrastive learning We
propose a two-step learning process that pretrains the
network using contrastive learning. Networks trained
with supervised contrastive learning make the features
of augmented images to be close to each other, and



thus can be more aware of semantic concepts invari-
ant to such augmentations compared to reconstruction
networks. This paper utilizes supervised contrastive
learning [8], which use SimCLR with a single encoder.
The learning process is as follows. In the first stage,
we perform supervised contrastive learning, as shown
in Fig. 1. Because of the limited space, the loss func-
tion for positive pairs are shown:

Lsup
in =

∑
i∈I

− log

 −1

|P (i)|
∑

p∈P (i)

exp(zi · zp/τ)∑
a∈A(i) exp(zi · za/τ)

 ,

(5)
where P (i) is the set of images that have the same la-
bel as i. For negative pairs, the log operation is applied
before taking the average over I as the number of neg-
atives are much larger. The inner product of features
is used as the distance.

In the second stage, we train the MLP for classifica-
tion using the features obtained by the encoder trained
in the first stage. The vectors obtained in supervised
contrastive learning has higher dimension than the
number of classesN ; thus, the MLP finds the best map-
ping between those vectors and N -dimensional vector.

Anomaly scores in each task space At the time
of testing, the unknown detection is performed using
the features of the learned network. In CROSR, dis-
tances of a sample to each MAV are calculated using
vectors that concatenate features from multiple out-
puts. In the proposed method, EVT is applied to the
individual features to be used, and the weighted sum of
the anomaly scores calculated from each feature is used
as the final anomaly score. In this way, the influence
of differences in the distribution of values in each fea-
ture can be removed. The inner product is used as the
distance function to match the loss function of the con-
trastive learning. As shown in Fig. 2, suppose we have
feature vectors a and b from different tasks and their
MAVs. Then, the anomaly score Wi for i-th sample is
calculated as follows:

Wa(i) = EV Tai
(ai ·MAVai

) (6)

Wb(i) = EV Tbi(bi ·MAVbi) (7)

Wi = mean(Wa(i),Wb(i)) (8)

4 Experiments

Experiments were conducted on the open-set de-
tection, which classifies known and unknown into two
classes, and on the open-set classification, which clas-
sifies N known classes and one unknown class.

Datasets In the open-set detection setting, follow-
ing [13], we used CIFAR10, SVHN, and Tiny-Imagenet
to measure the performance. CIFAR10 and SVHN
contain 10 classes each and we divided each dataset
into 6 known classes and 4 unknown classes. In CI-
FAR+10 and CIFAR+50, we used 4 animal classes
from CIFAR10 as known classes, and used 10 and
50 classes of non-animal classes from CIFAR100 [9]
as unknown classes respectively. Tiny-Imagenet con-
tains 200 classes and we randomly divided 20 classes

Table 1.　Comparison of AUROC in calculating features
in a unified space and task-specific spaces

CIFAR10 SVHN TinyImangenet

concat, norm

　(CROSR) 81.16 94.64 72.72

concat, inner product 83.97 95.12 76.58

split, inner product

　　(Ours) 84.24 95.53 77.04

as known classes and the other 180 classes as unknown.
The image resolution was 64 times 64 pixels. The area
under the ROC curve (AUROC) was used for the eval-
uation of open-set recognition and we took the average
of five experiments to compensate stochasticity.

In the open-set classification setting, we used 10
classes of CIFAR10 as known classes. For testing, Tiny-
Imagenet and LSUN are used as unknowns. There are
two choices of resize or crop to match the resolution
of CIFAR10; thus, we have four datasets in total. The
average of F1 scores for each classes (macro-F1 score)
is used for the evaluation.
Augmentation In SimCLR [3], two augmented im-
ages need to be generated. According to the paper,
powerful augmentation methods such as fast-augment
and auto-augment can be used for better training, but
in this study, only RandomCrop and Colorjitter are
used for augmentation for fair comparison to the ex-
isting methods.

Network settings As mentioned in [21], higher
classification performance tends to improve the AUC.
Therefore, for a fair comparison, we use the same en-
coder network as the existing method [13]. This en-
coder CNN consists of eleven 3x3 convolutional lay-
ers, with batch normalization and LeakyReLU (0.2)
between each layer. In this network, beside the fi-
nal output, there are three blocks where the resolu-
tion changes, and the skip connection of the encoder-
decoder model is placed between these blocks. The
intermediate outputs from these blocks are denoted as
z1, z2, and z3.

In both 1st- and 2nd-stages, SGD was used to train
the models, and the learning rate was set to decay from
3e-1 to 6e-5 by the cosine function in the 1st-stage, and
to decay by 0.2 every 20 epochs from 5e-1 in the 2nd-
stage. The vector dimension of contrastive features was
192. In the 1st-stage, all the training data were used,
and in the 2nd-stage, the training data was divided to
create validation data, and this validation data is used
to determine the epoch for the classifier’s training.

We utilized libMR[18] for the calculation of EVT,
and the hyperparameter tail-size was set to 20, fol-
lowing OpenMax.

Results We selected the features for the open-set
recognition, since the proposed network can obtain six
types of features including intermediate outputs, such
as av, co and z in Fig 1. The details of feature selec-
tion is provided in the supplementary material. The
experiment shows the intermediate outputs from the
encoders are not as useful av, co and z. In addition,
since the embedding z varies greatly in dimension de-
pending on the structure of the encoder CNN, only co



Table 2. The AUROC for unknown and known binary classification in each data set. Numbers are in percentages and are
averaged by five experiments. Scores for existing methods are taken from the respective papers.

Method CNN parameter CIFAR10 CIFAR+10 CIFAR+50 SVHN Tiny-Imagenet

SoftMax 　1 　67.7 　81.6 　80.5 　88.6 　57.7

OpenMax [2] 　1 　69.5 　81.7 　79.6 　89.4 　57.6

G-OpenMax [23] 　67.5 　82.7 　81.9 　89.6 　58.0

OSRCI [13] 　69.9 　83.8 　82.7 　91.0 　58.6

C2AE [14] 　2 　71.1 　81.0 　80.3 　89.2 　58.1

CROSR [21] 　1.4 　88.3 　91.2 　90.5 　89.9 　58.9

GDFR [15] 　3 　80.7 　92.8 　92.6 　93.5 　60.8

CGDL [20] 　10.8 　90.3 　95.9 　95.0 　93.5 　76.2

Ours 　1 　84.2 　95.0 　94.6 　95.5 　77.0

Table 3. The macro F1 scores obtained by the classification for each class. Scores of existing methods are taken from each
paper.

Method CNN parameter Tiny-Imagenet Tiny-Imagenet LSUN Crop LSUN Resize

　Crop 　Resize

SoftMax 1 63.9 65.3 64.2 　64.7

　OpenMax [2] 1 66.0 68.4 65.7 66.8

DHRNet+Softmax* 1.07 64.5 64.9 65.0 64.9

DHRNet+OpenMax 1.07 65.5 67.5 65.6 　66.4

CROSR [21] 1.07 72.1 73.5 72.0 74.9

C2AE [14] 2 83.7 82.6 78.3 80.1

GDFR + activation [15] 4 75.7 79.2 75.1 80.5

GDFR + Softmax* [15] 4 82.1 77.7 84.3 80.5

CGDL [20] 8.09 84.0 83.2 80.6 81.2

Ours 1 80.9 78.9 　85.9　 81.3

and av are used in the following.

Next, methods of how to calculate anomaly was eval-
uated. Three different experiments were conducted de-
pending on (1) whether two features should be concate-
nated or calculated in task-specific manner, and (2)
whether feature vectors should be normalized or not.
As Table 1 shows, the performance of the direct inner
product was better than normalized inner product, and
calculating the anomaly score in each feature is better
than the space that concatenates them.

We show the performance comparison of open-set
detection experiment in Table 2. G-OpenMax [23] and
OSRCI [13] are methods that use unknown images gen-
erated by a generative model as input; C2AE is a
method that uses reconstruction errors by training a
conditional AE [14]. Among the existing studies, only
those that use the same encoder network as ours are
listed. CGDL uses VGG13 as the encoder but we listed
it as the scores are similar to ours. As shown in Table
2, although the proposed method have fewer parame-
ters, the performance is comparable to heavy networks
that use discriminative reconstruction such as CGDL,
and even outperform it on TinyImageNet and SVHN.

We show the results of open-set classification exper-
iment in Table 3. A threshold has to be determined
to categorize whether a sample is an anomaly or not
for several methods including ours. In the EVT-based
methods such as OpenMax, CROSR and ours, it is
possible to take the argmax as the output is the prob-
ability for N+1 classes. However, GDFR [15] describes
a method for determining the threshold value from the

training data, and we follow the same protocol in this
experiment. The scores of the existing methods are
taken from each paper. The proposed method out-
performs existing methods on LSUN-Crop and LSUN-
Resize dataset as shown in Table 3. The proposed
method uses the smallest network in the list; thus, the
encoder should have lower expressive power and there
is no decoder. This indicates the effectiveness of the
proposed method for the open-set classification.

5 Conclusion
In this paper, we have shown that features trained

by the supervised contrastive learning is effective for
open-set recognition. The number of CNN parameters
can be significantly reduced compared to the existing
studies that utilize reconstruction. In addition, when
using multiple features for anomaly detection, we have
proposed a method to calculate the anomaly score from
each feature separately and take the weighted sum of
them, instead of concatenating them. We have also
showed that the inner product should not be normal-
ized when detecting anomalies while training is done
with normalized features. Experiments on standard
datasets have shown that the performance of the pro-
posed method was comparable to SOTA with fewer pa-
rameters.
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