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Abstract

This paper tackles the problem of learning a depth
completion network from a series of RGB images and
short-range depth measurements as a new setting for
depth completion. Commodity RGB-D sensors used in
indoor environments can provide dense depth measure-
ments; however, their acquisition distance is limited.
Recent depth completion methods train CNNs to esti-
mate dense depth maps in a supervised/self-supervised
manner while utilizing sparse depth measurements. For
self-supervised learning, indoor environments are chal-
lenging due to many non-textured regions, leading to
the problem of inconsistency. To overcome this prob-
lem, we propose a self-supervised depth completion
method that utilizes optical flow from two RGB-D im-
ages. Because optical flow provides accurate and robust
correspondences, the ego-motion can be estimated sta-
bly, which can reduce the difficulty of depth completion
learning in indoor environments. Experimental results
show that the proposed method outperforms the previ-
ous self-supervised method in the new depth completion
setting and produces qualitatively adequate estimates.

1 Introduction

Depth completion is the problem of estimating
the dense depth map from RGB images and sparse
depth measurements provided from LiDAR or SLAM.
A variety of depth completion methods using Con-
volutional Neural Networks (CNNs) have been pro-
posed [1, 2, 3, 4, 5, 6]. The typical design of CNNs is an
encoder-decoder network that propagates sparse depth
measurements to surrounding pixels. These methods
train CNNs in a supervised manner and show promis-
ing results. However, sensors such as LiDAR gener-
ally do not provide ground truth dense depth. To
overcome this issue, the self-supervised depth comple-
tion method has been proposed [7]. Nevertheless, self-
supervised learning is challenging in indoor environ-
ments that contain many non-textured regions.

In recent years, unsupervised monocular depth es-
timation has been extensively studied. Most studies
formulated this problem as the joint learning of depth
and camera pose from monocular videos. Zhou et
al. presented the photometric loss between the refer-
ence image and the image synthesized by warping the
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Figure 1: Concept of this work. Given an RGB image
and a short-range depth image, the proposed depth
completion network (DCNet) estimates the depth in-
cluding the depth outside the measurement range of
the sensor (filled in white in the input depth image).
DCNet is trained in a self-supervised manner.

source image using estimated depth and camera pose
to train depth and ego-motion networks [8]. Follow-
ing [8], various unsupervised methods have been pro-
posed [9, 10, 11]. Some studies introduced optical flow
for estimating ego-motion [12, 13] to handle indoor
scenes.

In indoor environments, relatively dense depths can
be measured with sensors such as Microsoft Kinect.
However, the measurable distance of such a sensor may
be short, e.g., up to 10 m. Extending the measurable
distance extends the possibilities of applications using
the same sensor. In this paper, we propose a method to
estimate a complete depth map, including farther dis-
tances, from an RGB image and a short-range depth
map (Fig. 1). In the conventional depth completion
setting, the input depth is sparse, but it contains the
full range of distances to be estimated, which can be
used as supervisory signals. In contrast, the problem
addressed in this study has limited access to the signals,
i.e., the distances to be estimated are more extensive
than the supervisory signals. The proposed method
combines the best aspects of depth completion and un-
supervised monocular depth estimation. We extend
an unsupervised depth learning framework for indoor
environments to utilize depth measurements, which en-
ables us to predict absolute depth.

The contributions of this work are as follows:

• We pose the problem of estimating long distances
from RGB images and short-range depth measure-
ments as a new setting for depth completion.

17th International Conference on Machine Vision Applications (MVA)
Fully Online, July 25–27, 2021.

© 2021 MVA Organization

P2-7



• We propose a self-supervised indoor depth com-
pletion framework consisting of depth and optical
flow networks.

• We analyze relationships between the input depth
measurements used during training and inference,
and show effective combinations to achieve high
performance.

2 Proposed Method

2.1 Overall Pipeline

Fig. 2 shows an overall pipeline of the proposed
method consisting of two networks: depth completion
network (DCNet) and optical flow estimation network
(FlowNet). DCNet takes RGB and short-range depth
images as input and estimates a dense depth map.
FlowNet takes two RGB-D images as input and pre-
dicts the optical flow from the two images. These net-
works are trained in a self-supervised manner using in-
put RGB-D images and estimated outputs.

During training, multiple calibrated RGB-D images
are used as input. The relative camera pose of two
RGB-D images is estimated via correspondences ob-
tained by the estimated optical flow. For each of the
RGB-D images, DCNet estimates the depth map. Once
the depth map and camera pose are obtained, the RGB
images of the different views can be warped by comput-
ing the viewpoints’ transformation. The photometric
error between the original and warped images is used
as self-supervisory signals for DCNet. The warped im-
ages can also be generated from optical flow, and they
are used to train FlowNet. We will provide a more
detailed explanation in the subsequent sections.

2.2 Ego-Motion Estimation via Optical Flow

Ego-motion estimation is an essential component of
self-supervised learning. To cope with indoor scenes,
some studies introduce an optical flow estimation net-
work and estimate ego-motion based on the optical
flow [12, 13]. Since the optical flow network is trained
in an unsupervised manner, the overall pipeline can
be regarded as unsupervised learning. Zhou et al. [13]
presented a CNN that uses optical flow images as in-
put and ego-motion as output to improve the depth
estimation performance in indoor environments. Zhao
et al. [12] showed that it is more effective to estimate
the ego-motion by computing the fundamental matrix
from the correspondences obtained from the optical
flow rather than inputting the optical flow images into
the CNN. In this work, we adopt the ego-motion esti-
mation method using correspondences.

The core idea is to seek reliable correspondences
from optical flow. We estimate forward and back-
ward optical flow from input images by FlowNet and
compute occlusion mask [14] and flow consistency

scores [10]. Subsequently, we randomly sample k cor-
respondences with the top 20% consistency scores in
the non-occluded region. Once the correspondences are
found, the fundamental matrix is computed using the
8-point algorithm [15] and RANSAC [16]. The appro-
priate camera pose is estimated by geometric verifica-
tion.

The loss function for FlowNet is defined as follows:

Lflow = wf
1Lfp + wf

2Lfs + wf
3Lfc (1)

where Lfp is the photometric loss [12], Lfs is the flow
smoothness loss [10], and Lfc is the forward-backward

flow consistency loss [10]. We use (wf
1 , w

f
2 , w

f
3 ) =

(1.0, 10.0, 0.01) during training.

2.3 Self-supervised Depth Completion Learning

We build the proposed self-supervised depth com-
pletion network upon the previous unsupervised depth
learning framework [12]. The main difference is the use
of two different depth-related supervisory signals.

First, we use the short-range depth as a supervisory
signal. Specifically, we compute the difference between
the input depth and the output depth from DCNet for
pixels where the depth measurement exists. Let i be
the pixel and D and D̂ be the estimated depth map
and input depth map, respectively. This loss is defined
as follows:

Ldd =
1

|Md|
∑

i∈Md

|D(i)− D̂(i)| (2)

whereMd is a set of pixels for which a depth measure-
ment exists. This loss encourages DCNet to learn the
absolute scale of the depth.

Second, we use the 3D points recovered using the
correspondences obtained from the optical flow as su-
pervisory signals. Similar to the camera pose estima-
tion, we use the k pixel correspondences and apply two-
view triangulation [17] to obtain the depths of these
pixels. Since the camera poses are relative in scale,
the depth obtained by triangulation is also relative.
To align the depth scale between the depth from tri-
angulation Dt and depth estimated by DCNet D, we
introduce a single scale factor s and consider the depth
to be D̂t = sDt. Using s that minimizes the error, we
calculate the loss defined as follows:

Ldt =
1

|Mt|
∑
i∈Mt

|D(i)− D̂t(i)| (3)

where Mt is a set of pixels for which a triangulated
depth exists.

The loss function for DCNet is defined as follows:

Ldepth = wd
1Ldp + wd

2Lds + wd
3Ldt + wd

4Ldd + wd
5Ldr (4)

where Ldp is the photometric loss [12], Lds is the
depth smoothness loss [10], Ldr is the dense re-
projection loss [12]. We use (wd

1 , w
d
2 , w

d
3 , w

d
4 , w

d
5) =

(1.0, 10−4, 1.0, 1.0, 0.1) during training.
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Figure 2: Overall pipeline of the proposed method. DCNet takes an RGB-D image and estimates a dense depth
map. FlowNet takes two RGB-D images and predicts their optical flow. The dense depth map and optical flow
are used to synthesize RGB images, which is used as supervisory signals. The optical flow is also used to estimate
the ego-motion, and triangulation is applied to obtain a depth map that is used as an auxiliary supervisory signal.

Table 1: Quantitative results on the NYU Depth v2 dataset. Depth measurements of up to 3 meters are used for
training and inference. The method of [12] was trained only on RGB sequences and the scale is relative.

Method Input Error ↓ Accuracy ↑

Rel RMSE log10 δ < 1.05 δ < 1.15 δ < 1.25 δ < 1.252 δ < 1.253

Zhao et al. [12] RGB 0.192 0.665 0.080 0.209 0.519 0.705 0.916 0.975

Ma et al. [7] RGB-D 0.076 0.558 0.038 0.699 0.847 0.883 0.951 0.983
Ours RGB-D 0.057 0.521 0.029 0.757 0.850 0.892 0.956 0.986

3 Experiments

3.1 Implementation Details

Dataset: We evaluate the proposed method on the
NYU Depth v2 dataset [18], which contains both RGB
and depth images of 464 indoor scenes taken with the
Microsoft Kinect sensor. We use the official split, i.e.,
249 scenes for training and 215 scenes for testing. For
training, each raw video sequence in the training set is
sampled spatially uniformly to produce approximately
48k synchronized RGB-D image pairs. Since large non-
textured regions complicate the consistency checking
between frames, the original RGB and depth images
of size 640 × 480 are resized to 256 × 192. We used
654 labeled images of the original size to evaluate the
proposed depth completion network. The maximum
depth of the test set is 10 m.

Training: Our training procedure consists of two
stages. We first train the optical flow network for 20
epochs. Afterward, the parameters of the optical flow
network are fixed, and the depth completion network is
trained in another 20 epochs. Although the proposed

method can also be trained by end-to-end learning, it
requires more iterations than two-stage training. Sim-
ilar to prior work [12], we can add a stage where the
optical flow and depth completion networks are trained
jointly. However, it hardly improved the accuracy.

In each stage, we augment the input data with flips
with 0.5 probability and color jitter. We also add noise
of [−0.2, 0.2] m to the depth and randomly remove the
depth value with 0.1 probability. We train the networks
using the Adam optimizer [19] with mini-batches of size
16. An initial learning rate is set to 10−4 and reduced
to 10% for every 5 epochs.

3.2 Comparison with Existing Methods

We compare our method with the existing methods
including unsupervised depth estimation [12] and self-
supervised depth completion [7]. Both the proposed
method and the method of [7] are trained in the same
short-range setting, where the short-range depth is de-
fined as the depth up to 3 m. We report evaluation
metrics commonly used for depth estimation [10, 12]
and depth completion [5, 7]: mean absolute relative dif-
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Figure 3: Qualitative comparison between recent self-supervised depth completion and our method. (a) Input
RGB image. (b) Input short-range depth. (c) Ground truth. (d) Predictions by the method of [7]. (e) Predictions
by our method. Depth measurements up to 3 m are used during training and inference.

Table 2: The performance of models trained in different
depth ranges.

Depth Range Error Accuracy

Training Inference RMSE δ < 1.25

up to 3 m up to 3 m 0.521 0.892
up to 5 m 0.616 0.933
up to 8 m 0.301 0.989

up to 5 m up to 3 m 0.826 0.778
up to 5 m 0.186 0.983
up to 8 m 0.323 0.974

up to 8 m up to 3 m 1.973 0.695
up to 5 m 0.337 0.959
up to 8 m 0.064 0.999

ference (Rel), root mean squared error (RMSE), mean
log 10 (log10), and accuracy (δ < thr), which is the ra-
tio of pixels whose maximum relative error δ is below
the threshold thr.

Table 1 shows the quantitative results on the NYU
dataset. The proposed method outperforms the re-
cent self-supervised method [7] in all metrics. The
proposed method can estimate the depth much more
accurately than the method which our method built
upon [12]. Fig. 3 shows a qualitative comparison be-
tween our method and the method of [7]. The esti-
mation results of [7] focus only on distances around
the input depth measurements and fail to estimate the
global depth scale of a scene. Meanwhile, the proposed
method can estimate the depth more accurately even
at a long distance.

3.3 Analysis of Input Depth Range

We investigate relationships of the input depth
ranges used during training and inference. Since sen-
sor specifications may vary from application to appli-
cation, the generality of the model is an important as-
pect. Table 2 shows the performance of the proposed
model trained in different depth ranges, i.e., up to 3 m,
5 m, and 8 m. In most cases, the accuracy is improved
when the depth range during inference is more exten-
sive than during training. It is worth noting that using
a narrower depth range during inference than during
training results in performance degradation. Compar-
ing in terms of the depth range used during inference,
the highest accuracy is achieved when the depth range
during inference is the same as during training.

4 Conclusion

In this paper, we tackled a new depth comple-
tion problem of completing the depth of long-distance
points from an RGB image and a short-range depth
map. We presented a self-supervised depth completion
method for indoor environments, which uses optical
flow for ego-motion estimation. The experimental re-
sults demonstrated that our method outperformed the
recent self-supervised depth completion method. We
also investigated relationships between the input depth
measurements used during training and inference. We
showed that it is effective to align the depth ranges
during training and inference.
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