
Analysis of Evaluation Metrics with the Distance between
Positive Pairs and Negative Pairs in Deep Metric Learning

Hajime Oi†, Rei Kawakami‡, Takeshi Naemura†

† The University of Tokyo, ‡ Tokyo Institute of Technology
{hoi,naemura}@hc.ic.i.u-tokyo.ac.jp, reikawa@c.titech.ac.jp

Abstract

Deep metric learning (DML) acquires embeddings
via deep learning, where distances among samples of
the same class are shorter than those of different
classes. The previous DML studies proposed new met-
rics to overcome the issues of general metrics, but they
have the following two problems; one is that they con-
sider only a small portion of the whole distribution of
the data, and the other is that their scores cannot be
directly compared among methods when the number of
classes is different. To analyze these issues, we con-
sider the histograms of the inner products between ar-
bitrary positive pairs and those of negative pairs. We
can evaluate the entire distribution by measuring the
distance between the two histograms. By normalizing
the histograms by their areas, we can also cancel the
effect of the number of classes. In experiments, visual-
izations of the histograms revealed that the embeddings
of the existing DML methods do not generalize well to
the validation set. We also confirmed that the evalua-
tion of the distance between the positive and negative
histograms is less affected by the variation in the num-
ber of classes compared with Recall@1 and MAP@R.

1 Introduction

Metric learning aims to learn an embedding space
in which the similarity of data corresponds to the dis-
tance between vectors; i.e., the more similar the data
are, the shorter the distance between them in the space
becomes. In the case of images, the embedding space
is acquired such that the distances are shorter for im-
ages of the same class and longer for images of different
classes. Many applications can benefit from a better
evaluation of the semantic distance, such as content-
based image retrieval and face recognition. Metric
learning that relies on deep learning is called deep
metric learning (DML), and its performance has been
higher than those based on non-linear kernels and clas-
sifiers.

The literature on DML has few discussions on eval-
uation metrics. One such metric, normalized mutual
information (NMI) [9], is used to evaluate clustering; it
examines the information gain of the estimated labels
for the true labels. Clustering is necessary to estimate
the labels in the learned space; thus, NMI depends
on the clustering accuracy. Another evaluation met-
ric, Recall@K [5], is used in information retrieval; it
represents the percentage of total data in the dataset
containing at least one positive among their K near-
est neighbors; thus, Recall@K does not consider the
number of positives in the neighbors or how close each

positive is to the query. R-Precision and Mean Average
Precision@R (MAP@R) were used in [10] as alterna-
tives, but these also have two issues. First, they focus
only on the accuracy of R nearest neighbors, which is a
tiny part of the whole data distribution. Second, when
the number of classes increases, their scores probably
decrease because the proportion of negatives in the R
nearest neighbors increases; therefore, their scores can-
not be directly compared if the number of classes is
different.

To analyze the issues of evaluation metrics in DML,
we consider the distribution of inner products between
positive pairs as well as that of negative pairs. We
also measure the distance between these two distribu-
tions by using the Jensen-Shannon divergence (JSD)
to evaluate the performance of DML on the entire dis-
tribution. Additionally, we normalize the distribution
by its area to cancel out the variation in the number
of classes.

In the experiments, we observed changes in the
mean value of the inner products between positive pairs
and those of negative pairs for the training and valida-
tion sets during training. We also determined whether
these changes are consistent with those of JSD, Re-
call@1, and MAP@R. As the training progressed, the
average value of the inner products between positives
in the training set increased, but those in the validation
set remained constant or slightly decreased, suggesting
that the learned space overfits the training set and is
not well generalized. The changes in JSD were similar
to those of the existing metrics, indicating that it does
not show any clear advantages in using the entire dis-
tribution compared with R nearest neighbors with the
examined dataset. However, JSD showed signs of over-
fitting to the training set and synchronized with it. It
starts with the same value for the training and valida-
tion sets, and later, only the value for the training set
increases. Since the numbers of classes in the training
and validation sets are different, other metrics cannot
compare their scores directly or capture the overfitting.

The experiments with different data splitting meth-
ods also revealed problems with those used in the pre-
vious studies.

2 Preliminaries

R-Precision and MAP@R Musgrave et al. [10]
propose to use R-Precision and MAP@R to evaluate
DML, where R is the total number of positives for
each query. These two measures are related to Pre-
cision@K, which refers to the percentage of positives
in the K nearest neighbors. R-Precision is the average
of Precision@R over all of the queries. MAP@R is the

17th International Conference on Machine Vision Applications (MVA)
Fully Online, July 25–27, 2021.

© 2021 MVA Organization

P2-6

average of Average Precision@R (AP@R) over all of
the queries, where AP@R is given by 1

AP@R =
1

R

R∑
k=0

Precision@k × p(k) (1)

p(k) =

{
1 if k-th nearest neighbor is positive,

0 if k-th nearest neighbor is negative.

MAP@R and AP@R have two problems. The first
is that they do not evaluate the distribution of the en-
tire data; namely, they ignore the improvement when a
correct positive sample not included in its R neighbors
approaches the query. The second is that the scores
are sensitive to changes in the number of classes. In
other words, when the number of classes increases, the
possibility of having negatives in the R nearest neigh-
bors increases, and the score decreases because all the
added classes are negative.

Loss functions in DML Early losses in DML at-
tempted to obtain the global metric space by opti-
mizing distances within small local groups [3, 17, 4],
which was inefficient because of the enormous number
of possible group combinations. One way to meet this
challenge is to prepare proxies for each class and to
put constraints only on the distances between the data
and the proxies. Most of the losses in this category are
similar to the softmax loss.

Here, we will review the softmax loss and the nor-
malized softmax loss (NSL) to clarify the distance and
inner products between any pair. Let us define xi to
be the input to the last fully connected (FC) layer of
the i-th sample; it is a d-dimensional vector belonging
to the yi-th class. The softmax function, which also
serves as a loss function in metric learning, outputs
a vector whose j-th element represents the predicted
probability that xi belongs to class j. The FC layer
consists of a weight matrix W ∈ Rd×C and a bias vec-
tor b ∈ RC . Wj denotes the j-th column of W, and C
is the number of classes. The softmax loss maximizes
the yi-th element of the final vector as it is the true
class of xi.

Softmax = − log
eW

T
yi

xi+byi∑C
j=1 e

WT
j xi+bj

(2)

In DML, Wj is often treated as a proxy of the j-th
class and b is ignored; therefore, the inner product of xi

and Wj , both of which are ℓ2-normalized, is considered
to be a distance [2, 12, 6]. The simplest loss [16, 19] is
called the normalized softmax loss (NSL) in this paper,
following [10]:

NSL = − log
esW̄

T
yi

x̄i∑C
j=1 e

sW̄T
j x̄i

, (3)

where .̄ is ℓ2-normalized and s is a scaling parameter.

(a) Before normalization (b) After normalization

Figure 1: Distribution of inner products before and af-
ter normalization. The histogram in red shows the in-
ner products between every positive pair after training,
and the histogram in blue shows those of the negative
pairs. Best viewed in color.

3 Distribution of inner products between
positives and negatives

In many DML losses, the inner product between an
embedded vector of a given sample and a proxy vector
for its class, which are ℓ2-normalized, are evaluated and
maximized during training. Fig. 1 (a) depicts two his-
togram distributions of inner products; the one in red
shows the inner products between every positive pair
and the one in blue is for those between every negative
pair in the dataset. It is clear that the number of neg-
ative pairs is much larger than the number of positive
pairs. If the number of classes is c and the average
number of samples per class is n, the number of posi-
tive pairs is O(cn2) and the number of negative pairs is
O((cn)2); thus, the latter is about c times larger. This
imbalance may make it impossible for metrics based on
rankings arranged in order of increasing inner product,
such as MAP@R, to evaluate the true performance of
models.

To resolve this issue, we consider a distribution that
is normalized so that the areas of the histograms of the
positive and negative pairs are each 1.0, as shown in
Fig. 1 (b). In this way, we cancel out the imbalance in
the number by normalization and obtain distributions
independent of the number of classes.

The two histograms in Fig. 1 (b) can be regarded
as discrete probability distributions since they sum to
1. We can evaluate the distance between them by us-
ing tools to evaluate the distance between probabil-
ity distributions, such as the Kullback-Leibler diver-
gence (KLD). KLD, as shown in Eq. (4), represents
the difference between the true probability distribu-
tion P and its predicted probability distribution Q,
and it is equal to the cross-entropy of P and Q mi-
nus the self-information content of P. In general, KLD
is not symmetric between P and Q, i.e., DKL(P ||Q) ̸=
DKL(Q||P). Thus, we employ the JSD as shown in
Eq. (5), which a modification to KLD that is symmet-
ric. JSD is obtained by adding the probability distribu-
tion M averaged over P and Q and averaging the KLD
of P and M and the KLD of Q and M. The minimum

1Note that Eq. (3) in [10] should be a typo.

(a) Cars196 [7] (b) CUB-200-2011 [15]

Figure 2: Mean value of inner products between every
positive pair and those between every negative pair in
the training and validation sets. Overfitting occurred
for positive pairs during training.

value of JSD is 0 when P and Q coincide perfectly, and
its maximum is 1 when P and Q do not overlap at all.

DKL(P ||Q) =
∑
i

P (i) log
P (i)

Q(i)
, (4)

DJS(P ||Q) =
DKL(P ||M) +DKL(Q||M)

2
, (5)(

M(i) =
P (i) +Q(i)

2
.

)
4 Experiments

We implemented our model in the PyTorch frame-
work [11].

Dataset Our evaluation used the Cars196 [7], CUB-
200-2011 [15] datasets. The validation set was pre-
pared for model selections aligned with [10]; therefore,
the datasets were split into training, validation, and
test sets in a ratio of 4:1:5 in the number of classes.

We also conducted experiments in which we split the
classes in the default order or in random order. The
elements of the two datasets are originally arranged in
the order of their labels names; cars from the same
company are placed near each other in the Cars196
dataset [7] and birds belonging to the same family
and genus are near each other in the CUB-200-2011
dataset [15]. Since there seems to be many similarities
among the items belonging to the same domain in the
higher level classifications, there is possibly a domain
bias among the training, validation, and test sets when
they are divided up according to the default order of
the classes. We set the random seed to 1.

Augmentation The input images in the training set
were first randomly cropped in the scale-ratio range of
[1/8, 1] and aspect ratio [3/4, 4/3]; then, they were re-
sized to 299 pixels square. Though the previous stud-
ies set the size 244 pixels, we used a pre-trained model
provided PyTorch framework [1] and could not choose
the size. After that, they were flipped horizontally
with a probability of 50 percent. Finally, the values of
their RGB channels were normalized according to the

Figure 3: Comparison of the histograms in the test
set before and after training with two datasets where
overfitting occurs. The variances of the histograms for
negative pairs decreased, and the peak is closer to 0
after training; thus, although the overfitting occurs,
the network are successful to separate the negatives
from each other. It is more difficult to let positives be
closer.

mean = (0.485, 0.456, 0.406) and standard deviation
= (0.229, 0.224, 0.225). The images in the validation
and test sets were resized to 299 pixels square and then
normalized in the same way as above.

Training and Evaluation We used the Inception-
v3 network [14] pre-trained on ImageNet [13] as the
embedding network, whose last fully-connected (FC)
layer was replaced by a new one with 2064 input and 64
output dimensions. For the loss, we used the NSL ex-
pressed by Eq. 3 with s = 10. Training was performed
for 20 epochs in all cases. The initial learning rates
of the network and NSL were set to 10−4 and 10−2,
respectively, and they were tuned with the AdamW
optimizer [8]. In the evaluation, we used Recall@1 and
MAP@R as representatives of the metrics used in the
previous studies and JSD as proposed.

Results Fig. 2 shows the mean values of the inner
products in the training and validation sets. The aver-
ages of the two sets for the negative pairs were almost
the same during training and converged to around 0.
The negative pairs were sufficiently separated because
the Euclidean distance between negative pairs is likely
to be

√
2 for negative pairs uniformly distributed on

the unit hypersphere [18]. On the other hand, although
the positive mean was initially small and subsequently
increased in the training set, it remained constant or
slightly decreased in the validation set, indicating that
overfitting occurred.

To clarify the difficulty of letting positives be closer
in metric learning, we also visualize the histograms in
the test set before and after the training in Fig. 3.
The histograms for the positive pairs show a slight de-
crease of the inner products though we hope them to
be larger, and this tendency is the same for the mean

Figure 4: Scores of existing metrics and JSD for training and validation set. Though the changes in the individual
metrics were similar on validation set, the scores for the training set were different from those of the validation
set. On the one hand, in JSD, these score were initially almost the same; then, the training score started to
exceed the validation score when the overfitting began in Fig. 2. On the other hand, regarding the metrics used in
the previous studies, the validation scores were initially larger than the training scores; moreover, the large-small
relationship reversed after the overfitting started.

value of them, although the inner products for train-
ing set indeed become larger as in Fig. 2. On the other
hand, the variance of the distribution of negative pairs
becomes smaller, and the inner products between the
negatives are closer to 0 after training.

Fig. 4 depicts the dissimilarity between the metrics
used in the previous studies and JSD. There was no
significant difference between them on the validation
set; therefore, the necessity of evaluating the whole
data distribution could not be verified. By contrast,
comparing the training with validation results, we can
see that the scores of JSD were equal before the overfit-
ting began in Fig. 2; then, the training scores exceeded
the validation scores. For Recall@1 and MAP@R, the
scores for the validation set were initially larger; more-
over, the reversal of the large-small relationship was
later than the start of overfitting. These results are
likely due to the fact that the number of classes in the
training set was about four times larger than that in
the validation set, and the number of negatives was
large, suggesting that the existing evaluations are eas-
ily affected by variations in the number of classes.

Finally, Table 1 reveals the differences in the scores
for the test set between classes split in default order
and in random order. These scores were calculated
with embeddings that were extracted using the model
of the epoch having the highest score for the validation
set. The scores for all metrics were lower when the
classes were partitioned in default order; thus, there
seemed to be a domain bias between the training, val-
idation, and test sets in this partition.

5 Conclusion

We analyzed DML, focusing on the histogram of
inner products between positive pairs and that of neg-
atives. Measuring the distance between the two his-

Table 1: Difference in scores of evaluation metrics on
the test set among class partitioning methods. For all
of the datasets, the scores were lower when the classes
were split in the default order than in a random or-
der, suggesting that there is a domain bias between
the training, validation, and test sets in the default
order.

Dataset Splitting Recall@1 MAP@R JSD

Cars196
default 0.673 0.168 0.439
random 0.721 0.226 0.472

CUB-200 default 0.481 0.164 0.401
-2011 random 0.659 0.260 0.579

tograms with JSD enabled us to consider all the data
other than R nearest neighbors, unlike the evaluation
metrics used in the previous studies. Moreover, nor-
malization of the histograms removed the effect of the
variation in the number of classes. As a result, we sug-
gest that the existing methods are likely to overfit the
distance between positives. Although we cannot verify
the necessity of considering data other than R nearest
neighbors, we can confirm that JSD reduces the effect
of the variation in the number of classes compared with
the existing metrics. In addition, there is a possibly lo-
cal domain bias with the default order of labels in the
datasets, suggesting that we should assign the classes
randomly in the training-validation-test splitting.

One of our future tasks will be to remove the overfit-
ting. Disentangled representations perhaps resolve this
issue, each variables of which are lower dimensional fea-
tures and independent of each other. We expect that
the use of disentangled representations will improve
class discrimination by including only features whose
inter-class variances are large and intra-class variances
are small.

References

[1] Inception v3 |PyTorch. https://pytorch.org/hub/

pytorch_vision_inception_v3/. Accessed: 2021-06-
11.

[2] J. Deng, S. Zafeririou. Arcface for disguised face recog-
nition. In IEEE International Conference on Com-
puter Vision Workshop, pages 485–493, 2019.

[3] R. Hadsell et al. Dimensionality reduction by learning
an invariant mapping. In IEEE Conference on Com-
puter Vision and Pattern Recognition, volume 2, pages
1735–1742, 2006.

[4] E. Hoffer, N. Ailon. Deep metric learning using triplet
network. In Similarity-Based Pattern Recognition, pages
84–92, 2015.

[5] H. Jégou et al. Product quantization for nearest neigh-
bor search. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 33(1):117–128, 2011.

[6] S. Kim et al. Proxy anchor loss for deep metric learn-
ing. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 3235–3244, 2020.

[7] J. Krause et al. 3d object representations for fine-
grained categorization. In International IEEE Work-
shop on 3D Representation and Recognition, 2013.

[8] I. Loshchilov, F. Hutter. Decoupled weight decay reg-
ularization. In International Conference on Learning
Representations, 2019.

[9] C. D. Manning et al. Introduction to Information Re-
trieval. Cambridge University Press, 2008.

[10] K. Musgrave et al. A metric learning reality check.
In European Conference on Computer Vision, pages

681–699, 2020.
[11] A. Paszke et al. PyTorch: An Imperative Style, High-

Performance Deep Learning Library. In Advances in
Neural Information Processing Systems, pages 8024–
8035. 2019.

[12] Q. Qian et al. Softtriple loss: Deep metric learning
without triplet sampling. In IEEE International Con-
ference on Computer Vision, pages 6449–6457, 2019.

[13] O. Russakovsky et al. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Com-
puter Vision, 115(3):211–252, 2015.

[14] C. Szegedy et al. Rethinking the inception architec-
ture for computer vision. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 2818–
2826, 2016.

[15] C. Wah et al. The Caltech-UCSD Birds-200-2011 Dataset.
Technical report, 2011.

[16] F. Wang et al. Normface: L2 hypersphere embedding
for face verification. In ACM International Conference
on Multimedia, page 1041–1049, 2017.

[17] J. Wang et al. Learning fine-grained image similar-
ity with deep ranking. In IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1386–
1393, 2014.

[18] C. Wu et al. Sampling matters in deep embedding
learning. In IEEE International Conference on Com-
puter Vision, pages 2859–2867, 2017.

[19] A. Zhai, H. Wu. Classification is a strong baseline
for deep metric learning. In British Machine Vision
Conference, page 91, 2019.

