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Abstract

Although most convolutional neural networks archi-
tectures for computer vision are built to process RGB
images, more and more applications complete this in-
formation with additional input channels coming from
different sensors and data sources. The current tech-
niques for training models on such data, generally
leveraging transfer learning, do not take into account
the imbalance between RGB channels and additional
channels. If no specific strategy is adopted, additional
channels are underfitted. We propose to apply channel-
wise dropout to inputs to reduce channel underfitting
and improve performances. This improvement of per-
formances may be linked to how much new informa-
tion is brought by additional channels. We propose a
method to evaluate this complementarity between ad-
ditional and RGB channels. We test our approach
on three different datasets: a multispectral dataset, a
multi-channel PDF dataset and an RGB-D dataset.
We find out that results are conclusive on the first two
while there is no significant improvement on the last
one. In all cases, we observe that additional channels
underfitting decreases. We show that this difference of
efficiency is linked to complementary between RGB and
additional channels.

1 Introduction

Multi-channel datasets using domain specific image
channels in addition to RGB channels have become
more and more common [3, 29, 31, 4, 21, 16, 27]. How-
ever, none of these datasets has a sample size compara-
ble to common large RGB datasets [5, 13]. These large
RGB datasets are the ones generally used to pre-train
convolutional neural networks (CNN) before transfer-
ring the learnt parameters as initial weights for an-
other task. Those weights will be fine-tuned on a target
dataset for which data is usually scarce. This process is
called transfer learning [30, 24, 32]. [20] show that the
smaller the target dataset, the higher the performances
increase using transfer learning. It suggests there is a
potential in using transfer learning to improve perfor-
mances on these datasets. Applying transfer learning
from an RGB dataset to a multi-channels dataset is not
trivial in the sense that additional channels (channels

that are not RGB and added after pre-training) cannot
benefit from the same training as the RGB channels if
no large annotated dataset with the same additional
channels exists. Working with multi-channel data has
been studied by [4, 17, 14, 7] proposing different ways of
merging features. However, none of these works focus
on the imbalance between RGB and additional chan-
nels existing at the beginning of fine-tuning. We show
that models trained on multi-channels datasets, when
evaluated only on additional channels, perform worst
than model trained only on additional channels: mod-
els already trained on RGB foster on RGB, and addi-
tional channels are under-exploited (underfitted).

We propose an approach for fine-tuning an RGB-
pre-trained CNN on a multi-channel dataset while forc-
ing the model to fit on additional channels. This ap-
proach, input channel dropout, consists in randomly
dropping some of the input channels. Only the inputs
are modified, so it can be plugged into any CNN ar-
chitecture without changing its inner layers. It makes
it very easy to implement. It is comparable to a data
augmentation technique.

We measure the improvement of this training strat-
egy on three datasets, two of which show significant
improvement, and measure a reduction in additional
channel underfitting for all datasets. We set up a met-
ric to measure the complementarity of additional chan-
nels relatively to RGB channels for the learning task.
We show that lower improvements on a dataset is due
to weaker complementarity.

In the next section, we present the works related to
this paper. We then present input channel dropout
in details and then perform computational experi-
ments on three object detection multi-channel datasets.
We finally discuss the results and how input channel
dropout improves performances by better exploiting
additional channels.

2 Related Work

Three aspects of Neural Networks training are in-
volved together when adding new channels to already
existing network: the fusion of these new channels
with the previous ones, the transfer learning be-
tween classic channels (RGB) and less common chan-
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nels (depth, multi-spectral, pdf-metadata), and the
regularization used when data is unbalanced.

Concerning fusion, two cases can be distinguished:
the channels are from different modalities (image,
sound, video, text) or the channels are from the same
modality (image RGB, image Depth, image spectral).
In the case of channels from different modalities, we
would talk about multi-modal fusion where as in the
case of the same modality, our case, we would talk
about multi-channel fusion. Fusion can be done ear-
lier or later, either in multi-modal context [2] or multi-
channel context [6].
In our case, multi-channel fusion, the different chan-
nels being of same nature (similar dimension, similar
way of processing them), they can be fused at earlier
stage without requiring much modification of the ar-
chitecture. That makes this choice relevant for testing
the potential of a new channel without redesigning the
whole model or when processing power is limited (we
train only one model).

When using datasets with limited amount of data,
models pre-trained on huge RGB data sets can be lever-
aged: previous works [4, 29, 17, 14, 7] use transfer
learning from ImageNet [5] to multi-channel datasets
(RGB + near infra-red, RGB + depth, mix of infra-
red, motion and gray-scale images).
The pre-trained model is optimized for using RGB
channels but no pre-training is done on other channels.
Input channel dropout aims at limiting the underfit-
ting of additional channels. Our method is close to
dropout which forces the network to randomly dis-
able neurons or connections [26], constraining features
to have low co-adaptation. In CNNs, dropout [15] is
most commonly used at the end of the network on fully
connected layers. Adaptations are proposed for convo-
lutional filters [28, 18, 8]. [25, 11] propose to drop a
whole channel from the inner layers of a CNN at once.
We propose to drop whole channels at the input level
to force the model to learn from additional channels.
In that case, the dropout can be interpreted on one
hand as a way to ensemble multiple predictors like in
feature bagging where multiple models are trained on
subset of selected features before being aggregated to
form a stronger predictor [22], and on the other hand
as a way to augment data creating new samples from
initial ones by removing some channels.
Concerning feature bagging, a noticeable remark from
[22], is that the more complementary are the channels
used for different predictors, the higher the improve-
ment on the aggregated predictor. We thus propose a
definition and an experimental measure of this comple-
mentarity between channels.
Concerning data augmentation, [10] make the distinc-
tion between conservative and aggressive data aug-
mentation. Conservative data augmentation does not
change the sample too much whereas aggressive data
augmentation takes the risk to break some of the in-
formation present in the original sample.

When using input channel dropout, we can choose a
drop rate similar to [15] that can control the aggres-
siveness of the regularization.

3 Methods

Code and datasets are available at https://
github.com/19327482/input_channel_dropout

Channel underfitting measurement : For a
model M and a set of channels F, we note Score[M(F )]
the performances of M evaluated on F only (replacing
the other channels (F̄ ) by zeros). We estimate the un-
derfitting of a set of channels F (additional or RGB)
for a model M by:

underfitting(M,F ) =
Score[MF (F )]− Score[M(F )]

Score[MF (F )]

we measure how far the performances Score[M(F )] are
from the maximal performances the network architec-
ture can achieve on F . We estimate this maximum
by training a model MF on F and evaluating it on F :
Score[MF (F )]. We perform 3 trainings and evalua-
tions for MF and take the average mAP as the refer-
ence value.

Input channel dropout : We consider the case
of training a CNN with multiple input channels in-
cluding RGB using transfer learning. When using
transfer learning, weights of the first channel featur-
ing RGB channels are already able to extract relevant
features. Weights of additional channels however were
not trained. We choose to leverage RGB pre-training
similarly as [4] : we initialize additional channels first
layer weights using for each channel the average of the
weights of the RGB channels.

We propose two variants of input channel dropout:
independent and simultaneous drop. We call ”indepen-
dent” drop the standard setting where each channel is
dropped independently from the others according to a
Bernoulli distribution with parameter pdrop. We pro-
pose another variant taking into account the fact that
RGB channels have benefited from pre-training. We
drop RGB channels simultaneously instead of indepen-
dently, increasing the probability that none of the RGB
channels is kept. We call ”simultaneous drop” the set-
ting in which RGB channels are dropped or kept to-
gether and additional channels are dropped indepen-
dently.

In both variants, to drop a channel, we replace its
pixels values with zeros. If all channels are to be
dropped, we instead keep them all in order to avoid
adding noise to the training procedure. To keep the
input values for the network consistent, we multiply
the intensity of each kept channel by nchannels/nkept.

Channel complementarity measurement: For
each dataset, we estimate the complementarity of the
set of additional channels to the RGB channels to per-
form the task (see figure 1). We measure the number
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Figure 1. Venn diagram explaining the ad-
ditional channel complementarity measurement.
Striped part is the part we retain for counting.

of samples for which additional channels can correct
the prediction of RGB channels. For this, we train and
evaluate a model Madd using only additional channels
and we train and evaluate another model MRGB us-
ing only RGB channels. For each confidence threshold
from 0.1 to 0.9 with a step of 0.1, we count all true and
false positives of each model. We count the percentage
∆TruePos of Madd true positives not included in MRGB

true positives (striped red part in 1) as the number of
samples on which additional channels can bring recall
improvement:

∆TruePos =
|TruePos(Madd) 6⊂ TruePos(MRGB)|

|TruePos(MRGB)|

In the same way, we count the percentage ∆FalsePos of
MRGB false positives not included in Madd false posi-
tives (striped blue part in 1) as the number of samples
on which additional channels can bring precision im-
provement:

∆FalsePos =
|FalsePos(MRGB) 6⊂ FalsePos(Madd)|

|FalsePos(MRGB)|

To assess if two predictions match, we compute their
intersection over union and set a threshold at 0.5. We
finally compute ∆add: the harmonic mean of ∆TruePos

and ∆FalsePos (as in F1-score computation) as a syn-
thetic metric of additional channel interest for the task.

We train three MRGB and three MFalsePos models
and do the counting for each of the possible 9 couples.

4 Experiments

We run a set of experiments on three multi-channel
datasets to measure the effect of input channel dropout.
All of these datasets have object-level annotations. We
use TensorFlow [1] object detection library’s [12] imple-
mentation of Faster-RCNN [19] with a 50 layers ResNet
[9] backbone. For each task, we measure the mean av-
erage precision (mAP) as defined in COCO challenge
for different drop rates. Each model is pre-trained on
COCO [13] dataset, weights are available at Tensorflow
model zoo. We run each model 3 times and measure
mean and standard deviation for mAP.

For this first experiment, we use the publicly avail-
able dataset “Multispectral Object Detection for Au-
tonomous Vehicles” [23], composed of multispectral

images (RGB, far-infrared, middle-infrared and near-
infrared), with annotated [person, car, bike, color cone,
car stop, bump, hole, animal]. This dataset is interest-
ing for testing our approach because additional chan-
nels add crucial information for the task: some objects
are much easier to recognize using certain channels, the
complementarity between channels is high (see figure
2).

Figure 2. Top-left to bottom-right: RGB, near,
middle, far infra-red. The person in the truck is
most distinguishable on infra-red images. Cars
on the other hand are more visible on RGB.

For the second experiment, we used a proprietary
dataset composed of 7 magazines (424 pages). Mag-
azine pages are labelled with bounding boxes around
each paragraph of text and each illustration. To each
bounding box is assigned a category: [pretitle, title,
subtitle, column, illustration, caption, title2, title3,
frame]. We used PDFalto to parse PDF files and ex-
tract bounding boxes and font-size for each line of text.
We add three channels that spatially map font-related
features in grey levels, pixel value in [0,255] (Fig. 3).
The first channel is the font-size relative to the maxi-
mum font-size in the magazine. For each line of text,
we draw a grey bounding box: the smaller the font-
size, the darker the box. This feature contains some
magazine-wise information not available in the RGB
channels. The second channel is the font-size frequency
in the magazine. The third channel is a paragraph and
illustration indicator channel: close lines of text are
grouped together in a grey (127) rectangle, paragraph
bounding box; white (255) rectangle, bounding boxes
of illustrations, are added when they could be parsed
from the pdf.

The third dataset, is the RGBD EPFL-corridor
dataset. It is composed of 6 scenes of up to 8 persons
walking in a corridor. We used the corrected labels
from [17]. We chose to split the data for training and
testing scene-wise.

5 Results and discussion

Underfitting. We observe that in all cases, in-
put channel dropout reduces underfitting of additional

http://cocodataset.org/#detection-eva
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
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Figure 3. Left to right: RGB channels of the
page, font-size frequency feature, relative font-
size feature, paragraph / image indicator feature.

Independent drop Simultaneous drop
Drop Underfitting Underfitting
rate mAP (%) RGB - Additional mAP (%) RGB - Additional

Multispectral dataset
No drop 21.53 ± 0.80 37.4% - 57.5% 21.53 ± 0.80 37.4% - 57.5%

5% 23.04 ± 0.56 21.8% - 37.5% 22.72 ± 0.97 23.1% - 23.2%
10% 22.75 ± 0.31 17.6% - 35.7% 24.25 ± 0.23 15.6% - 14.0%
20% 23.83 ± 0.71 14.9% - 29.0% 23.71 ± 0.22 9.4% - 3.8%
30% 23.51 ± 0.46 9.7% - 20.8% 24.43 ± 0.59 11.5% - 0.3%
40% 23.89 ± 0.60 1.5% - 14.5% 23.42 ± 0.45 7.4% - 5.2%
50% 23.00 ± 0.60 5.2% - 10.3% 23.35 ± 0.26 0.2% - 1.5%

Layout analysis dataset
No drop 59.83 ± 0.57 27.4% - 80.4% 59.83 ± 0.57 27.4% - 80.4%

5% 62.26 ± 1.08 4.5% - 57.4% 62.18 ± 0.70 4.2% - 5.0%
10% 61.71 ± 0.36 2.6% - 40.6% 62.09 ± 0.47 3.1% - 6.3%
20% 61.71 ± 1.24 2.6% - 26.4% 61.16 ± 1.00 4.0% - 3.2%
30% 61.38 ± 0.51 3.2% - 13.8% 61.2 ± 0.34 0.2% - 0.4%

RGBD pedestrian detection dataset
No drop 64.54 ± 0.05 1.3% - 44.0% 64.54 ± 0.05 1.3% - 44.0%

5% 64.63 ± 0.47 2.0% - 33.2% 64.26 ± 0.53 10.1% - 5.2%
10% 64.54 ± 0.66 1.9% - 23.9% 64.04 ± 0.49 12.2% - 5.8%
20% 63.98 ± 0.09 4.7% - 15.5% 63.17 ± 0.14 2.7% - 5.2%
30% 63.52 ± 0.36 11.9% - 9.2% 64.05 ± 0.52 9.2% - 0.4%

Table 1. Results: mAP (average and standard
deviation) and underfitting for all 3 datasets.
No drop is the baseline. Input channel dropout
reduces additional channels underfitting on all
datasets. It improves performances on multispec-
tral and PDF datasets.

channels (80.4% down to 0.4% for layout analysis,
57.5% to 0.3% for multispectral and 44.0% to 0.4%
for RGBD with simultaneous drop 1). Input channel
dropout also reduces underfitting for RGB channels for
layout analysis and multispectral (resp. 27.4% down to
0.2% and 37.4% down to 0.2% with simultaneous drop)
but not for RGBD dataset for which baseline underfit-
ting of the RGB channels was already very low (1.3%).
We observe that additional channels underfitting for
baseline is always higher than RGB underfitting (at
least ×1.5), which confirms the imbalance between the
two sets of channels that we attribute to pre-training.

Overall improvement. We observe (table 1) that
input channel dropout improves mAP on multispectral
(rel. +13.5%) and layout analysis (+4.1%) datasets for
both drop variants. However this is not the case for the
RGBD dataset (+0.1%).

Channels complementarity. ∆additional esti-
mates how much additional channels are complemen-
tary to RGB. We measured a value of 50.8% for mul-
tispectral dataset, 25.0% for layout analysis, and 6.5%
for RGBD dataset. It appears correlated with the im-
provements brought by input channel dropout. We
conclude that additional channels must be complemen-

tary to RGB channels to see an improvement using in-
put channel dropout.

dataset ∆TruePos ∆FalsePos ∆additional RGB Underf. Impr. Best drop r.
Multisp. 36.1% 85.6% 50.8% 20.2% 13.5% 30%
PDF 15.3% 68.5% 25.0% 27.4% 4.1% 5%
RGBD 3.3% 61.0% 6.5% 1.3% 0.0% No drop

Table 2. Additional channel complementarity
measures for each dataset, intial RGB channels
underfitting rate, simultaneous drop best relative
improvement and best drop rate.

We also observe for the RGBD dataset that initial
RGB channels underfitting is very low compared to
other datasets and increases with the drop rate. We
conclude that input channel dropout forces the model
to learn on additional channels and that therefore it
learns less efficiently on RGB channels.

Drop rate. The optimal drop rate for mAP de-
pends on the drop variant, but also on the dataset: it
is the highest for the multispectral dataset (30% for si-
multaneous, 40% for independent), it is 5% for the two
variants for layout analysis dataset, and ”no drop” gets
the best performances for the RGB-D dataset. The op-
timal drop rate is correlated to the relative importance
of additional channels in the dataset.

The higher the drop rate, the more the model is
forced to learn from every channel: it reduces under-
fitting. However optimal drop rate is moderate and
it does not minimize underfitting. Indeed, channel
underfitting does not take into account features co-
adaptation that might be beneficial to perform the
task. There is a trade-off between fully exploiting ad-
ditional channels and encouraging the model to learn
to extract features from joint modalities.

Drop mode. Finally, we observe that simultaneous
drop is able to further reduce additional channels un-
derfitting using high drop rates. It also offers a lesser
number of different input combinations to the model
: at a given drop rate, data augmentation is less ag-
gressive. This might explain the superiority of simul-
taneous drop on the multispectral dataset : it is able
to better reduce additional channels underfitting while
not adding too much aggressive perturbation to the in-
put.

6 Conclusion

We have proposed a strategy to improve transfer
learning from RGB to multi-channel datasets. It can be
easily applied to any network architecture as data aug-
mentation. We measured on three different datasets
the improvement brought by our method for different
hyper parameters choices. It appears that the more
complementary are the additional channels relatively
to RGB, the higher will be the improvement and the
higher the optimal drop rate. This is due to a trade-off
between reducing additional channels underfitting and



adding aggressive perturbations to the training that
can also impede joint learning of features.
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ing rgb+depth fusion for real-time object detection.
Sensors, 19:866, 02 2019.

[18] S. Park and N. Kwak. Analysis on the dropout effect
in convolutional neural networks. Asian Conference
on Computer Vision, 2016.

[19] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-
CNN: towards real-time object detection with region
proposal networks. CoRR, abs/1506.01497, 2015.

[20] D. Soekhoe, P. Putten, and A. Plaat. On the impact
of data set size in transfer learning using deep neural
networks. pages 50–60, 10 2016.

[21] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and
D. Cremers. A benchmark for the evaluation of rgb-d
slam systems. In Proc. of the International Conference
on Intelligent Robot Systems (IROS), Oct. 2012.

[22] C. Sutton, M. Sindelar, and A. Mccallum. Feature
bagging: Preventing weight undertraining in struc-
tured discriminative learning. Technical report, 2005.

[23] K. Takumi, K. Watanabe, Q. Ha, A. Tejero-De-Pablos,
Y. Ushiku, and T. Harada. Multispectral object de-
tection for autonomous vehicles. Proceedings of the on
Thematic Workshops of ACM Multimedia, pages 35–
43, 2017.

[24] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and
C. Liu. A survey on deep transfer learning, 2018.

[25] J. Tompson, A. J. Ross Goroshin, Y. LeCun, and C. Bre-
gler. Efficient object localization using convolutional
networks. Computer Vision and Pattern Recognition,
pages 1–10, 2015.

[26] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus.
Regularization of neural networks using dropconnect.
ICML, 2013.

[27] D. Wu, L. Pigou, P. Kindermans, N. D. Le, L. Shao,
J. Dambre, and J. Odobez. Deep dynamic neural net-
works for multimodal gesture segmentation and recog-
nition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 38(8):1583–1597, 2016.

[28] H. Wu and X. Gu. Towards dropout training for con-
volutional neural networks. Neural Networks, pages
1–10, 2015.

[29] F. Yasuma, T. Mitsunaga, D. Iso, and S. Nayar. Gen-
eralized Assorted Pixel Camera: Post-Capture Control
of Resolution, Dynamic Range and Spectrum. Techni-
cal report, Nov 2008.

[30] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How
transferable are features in deep neural networks?, 2014.



[31] A. Zacharopoulos, K. Hatzigiannakis, P. Karamaoy-
nas, V. M. Papadakis, M. Andrianakis, K. Melessanaki,
and X. Zabulis. A method for the registration of spec-
tral images of paintings and its evaluation. Journal of

Cultural Heritage, 29:10 – 18, 2018.
[32] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu,

H. Xiong, and Q. He. A comprehensive survey on
transfer learning, 2019.


