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Abstract

Semi-supervised learning is especially interesting
in the dense prediction context due to high cost of
pixel-level ground truth. Unfortunately, most such ap-
proaches are evaluated on outdated architectures which
hamper research due to very slow training and high re-
quirements on GPU RAM. We address this concern by
presenting a simple and effective baseline which works
very well both on standard and efficient architectures.
Our baseline is based on one-way consistency and non-
linear geometric and photometric perturbations. We
show advantage of perturbing only the student branch
and present a plausible explanation of such behaviour.
Experiments on Cityscapes and CIFAR-10 demonstrate
competitive performance with respect to prior work.

1 Introduction

Semi-supervised learning [1, 2] presents a great op-
portunity to speed-up the development cycle and en-
able rapid adaptation to new environments. It is espe-
cially relevant in the dense prediction context [3, 4, 5, 6]
since pixel-level labels are very expensive.

Many semi-supervised approaches are based on en-
forcing consistent predictions in differently perturbed
inputs [1, 2, 7, 8, 9]. Perturbations can be random [1],
adversarial [8], geometric [7], or even non-differentiable
[6]. The learning signal can be improved by averaging
predictions [1] or model parameters [2, 6]. Some ap-
proaches use one-way consistency, which allows the gra-
dients to pass only through the student branch, while
the teacher branch is frozen [2, 8, 9, 6]. Some of these
works perturb only the student branch [8, 9, 6]; how-
ever, none of them discuss advantages of that setup.

In practice, semi-supervised algorithms train on all
available supervised data, while also exploiting a much
larger quantity of unsupervised data. The computa-
tional strain is especially large in the dense-prediction
case since many practical applications require large
input resolutions [10, 11, 12]. Many semi-supervised
algorithms further increase the memory footprint of
training (training footprint) due to extra logits [13], a
GAN generator [14, 3] or discriminator [4, 15], or mul-
tiple model instances [16, 7, 17]. Such designs are less
appropriate for practical dense prediction since their
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training footprint constrains the backbone complexity
[18] and requires expensive hardware. Unfortunately,
current research mostly involves inefficient models [19]
which require a lot of GPU RAM and training time.

We propose a simple and effective method for semi-
supervised semantic segmentation. Our method is
based on one-way consistency [8, 9, 6] and non-linear
perturbations which outperform a recent baseline [6].
One-way consistency is advantageous since it retains
the training footprint of the underlying supervised al-
gorithm, unlike [4, 20, 5, 21]. Additionally, it outper-
forms two-way consistency in terms of generalization
performance, which we demonstrate by presenting in-
tuitive arguments and empirical evidence.

Experiments with the standard convolutional archi-
tecture [19] reveal competitive accuracy. We observe
a similar advantage in experiments with a recent effi-
cient architecture [22], which performs close while re-
quiring an order of magnitude less computation. This
is the first account of evaluation of semi-supervised al-
gorithms for dense prediction with a model capable of
real-time inference. This contributes to the goals of
Green AI [23] by enabling relevant research on inexpen-
sive hardware while reducing environmental damage.

2 Related Work

A semantic segmentation model can leverage unla-
beled images through GAN training as a dense discrim-
inator [3]. KE-GAN [21] additionally enforces seman-
tic consistency of neighbouring predictions by leverag-
ing label-similarity recovered from a large text corpus
(MIT ConceptNet). A semantic segmentation model
can also be trained as a GAN generator [4] in order to
encourage more realistic predictions. s4GAN [5] addi-
tionally post-processes dense predictions by removing
classes not identified by an image-wide classifier trained
with Mean Teacher [2]. Universal semantic segmenta-
tion [20] pulls features from unlabeled images towards
centroids obtained by training on multiple datasets.

Dense semi-supervision can also be based on pseudo-
labels [24, 25, 26, 27]. This can be improved by itera-
tive noisy-student training [26]. Mixing pseudo-labeled
with labeled images reduces performance in this setup.

A recent approach [7] proposes Π-style [1] two-way
consistency over geometric warps. Another recent ap-
proach [28] enforces consistency between outputs of
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redundant decoders with noisy intermediate represen-
tations. Mean Teacher consistency with CutMix per-
turbations [6] obtains state-of-the-art performance on
half-resolution Cityscapes.

Our method is related to [7] who also perturb im-
ages with geometric warps. However, we show that
perturbing only the student branch generalizes much
better than two-way consistency and has a smaller
training footprint. Different than most presented ap-
proaches and similar to [25, 26, 6], our method does
not increase the training footprint [18]. In comparison
with [25, 26], our teacher is updated in each training
step, which eliminates the need for multiple training
episodes. In comparison with [6], we use a perturbation
model which results in better accuracy. None of the
previous approaches addresses semi-supervised train-
ing of efficient dense prediction models [29, 30, 22, 31].

3 Dense One-Way Consistency

We formulate dense consistency as a mean pixel-
wise divergence between corresponding predictions in
the clean image and its perturbed version. We per-
turb images according to a composition of parametric
transformations of color and shape.

3.1 Notation and preliminaries

We typeset arrays and vectors in bold, sets in black-
board bold, and random variables underlined. We use
Python-like indexing notation.

We denote the labeled and the unlabeled dataset
as Dl and Du, respectively. We consider input im-
ages x ∈ X = [0, 1]H×W×3 and dense labels y ∈
Y = {1 ..C}H×W . A model instance maps an image
to per-pixel class probabilities: hθ(x)[i,j,c] = P(y[i,j] =

c|x,θ). For convenience, we identify output vectors
with distributions: hθ(x)[i,j] ≡ Py [i,j]|x,θ.

We consider teacher parameters θ′ as a frozen copy
of either student parameters θ (simple consistency) or
their moving average (Mean Teacher). In two-way con-
sistency θ′ = θ.

Our perturbation Tτ = TG
γ ◦ TP

ϕ is a composition of

a geometric warp TG
γ and a global photometric trans-

formation TP
ϕ with parameters τ = (γ,ϕ). Tγ dis-

places pixels with a dense deformation field and inter-
nally uses zero-padding and bilinear interpolation.

3.2 One-way consistency with a clean teacher

We express a general semi-supervised training crite-
rion as a combinaton of a supervised term Ls and an
unsupervised consistency term Lc:

E(θ;Dl,Du) = IE
(x,y)∈Dl

Ls(θ;x,y) + α IE
x∈Du

Lc(θ;x) . (1)

In our case, Lc encourages predictions to be invari-
ant under photometric perturbations TP

ϕ and equiv-

ariant over geometric perturbations TG
γ . We can de-

fine it as the expected average of a divergence D be-
tween corresponding predictions of the teacher with
the unperturbed input (clean teacher) and the student
with the perturbed input (perturbed student). We
compute Lc(θ;x) by sampling perturbation parame-
ters τ = (γ,ϕ) and averaging the following per-pixel
loss:

Li,j
c (θ;x, τ ) = D(TG

γ (hθ′(x))[i,j], hθ(Tτ (x))[i,j]) (2)

The warped teacher prediction TG
γ (hθ′(x))[i,j] is always

a valid distribution since the aggregation ignores pix-
els from padding. More precisely, we aggregate the loss
only in pixels (i, j) where TG

γ (1H×W )[i,j] = 1. Due to
θ′ being a frozen copy, effectively, the gradient prop-
agates only through the student branch, towards the
perturbed image.

We use KL divergence as a principled choice for D .
Since the gradient is not propagated through θ′ and
D(y, ỹ) = Hỹ (y) − H(y), the entropy increasing term
−H(y) has no effect on parameter updates; only the
cross-entropy term has an effect.

Our experiments show that clean teachers general-
ize better than perturbed teachers. We know that the
standard supervised loss promotes invariance to weak
perturbations due to jittering. Hence, the consistency
loss requires stronger perturbations to create more op-
portunity for learning from differences in predictions,
as also noted in [6]. However, strong perturbations may
push inputs beyond the natural manifold and spoil pre-
dictions. We observe that perturbing both branches
sometimes results in learning to map perturbed inputs
to similar arbitrary predictions (e.g. always the same
class). Hence, consistency training has best chances to
succeed when the teacher is applied to clean inputs.

3.3 Photometric and geometric perturbations

Our photometric perturbations are a composition
of five pixel-level transformations with image-wide pa-
rameters ϕ = (b, s, h, c,π). The compound perturba-
tion TP

ϕ can be described as follows: (1) brightness
is shifted by adding b to all channels, (2) saturation is
multiplied with s, (3) hue is shifted by addition with h,
(4) contrast is modulated by multiplying all channels
with c, and (5) RGB channels are permuted accord-
ing to π. ϕ is randomly picked: b ∼ U(−0.25, 0.25),
s ∼ U(0.25, 2), h ∼ U(−36◦, 36◦), c ∼ U(0.25, 2).

We formulate a class of parametric geometric trans-
formations by leveraging thin plate splines (TPS)
[32, 33] which transform a 2D point q as follows:

f(q) = A ·
[

1
q

]
+W · [φ(‖q − ci‖)]Ti=1..n

. (3)



In the equation, ci are control points, A is a 2×3 affine
transformation matrix, W is a 2×n control point co-
efficient matrix, and φ(r) = r2 ln(r). A and W are
obtained by solving the linear system

∧
i f(ci) = di,

where di are displacements of control points. Our warp
TG
γ (x) resamples x according to f defined by displace-

ments of four input quadrant centers: γ = (d1, ..,d4),
We sample each displacement from N (02, rI2), where
r is the maximum L∞ norm of the displacement. We
choose r = 0.05 ·H, where H is the image height.

4 Experiments

Our experiments evaluate generalization potential
of the proposed method. We denote simple one-way
consistency as ”simple”, Mean Teacher as ”MT”, and
our perturbations as ”PhTPS”. We present means and
standard deviations on 5 subsets except for experi-
ments with DeepLab v2. Firstly, we compare semi-
supervised algorithms and their components on half-
resolution Cityscapes [10]. Secondly, we compare vari-
ous consistency variants on Cityscapes and CIFAR-10.
Source code for reproducing experiments is available at
https://github.com/Ivan1248/semisup-seg-efficient.

4.1 Experimental setup

We perform semantic segmentation on Cityscapes
[10] and image classification on CIFAR-10. Cityscapes
contains 2975 training, 500 validation and 1525 testing
images with resolution 1024×2048. We present half-
resolution experiments which use bilinear interpolation
for images and nearest neigbour subsampling for all
labels. CIFAR-10 consists of 50000 training and 10000
test images of resolution 32× 32.

We apply the consistency loss to all training im-
ages (including the labeled ones). We train on batches
of Bl labeled and Bu unlabeled images. We perform
b|Dl|/Blc training steps per epoch without early stop-
ping. We use the same perturbation model across all
datasets and tasks, which is likely suboptimal [34].

We train our segmentation models on random
448×448 crops with random scaling and horizon-
tal flipping. The scaling factors are sampled from
U(1.5−1, 1.5). We use (Bl, Bu) = (8, 8) for SwiftNet-
RN18 [22] and (Bl, Bu) = (4, 4) for DeepLab v2 [19].
We train all models for 74400 iterations, which corre-
sponds to 200 epochs with SwiftNet and 100 epochs
with DeepLab v2 when all Cityscapes training la-
bels are used. In comparison with SwiftNet-RN18,
DeepLab v2 incurs a 12-fold slow-down of per-image
throughput during supervised training. However, it
also requires less epochs since it has very few pa-
rameters with random initialization. Hence, semi-
supervised DeepLab v2 trains in 30h on RTX 2080 Ti,
which is more than 5 times slower than SwiftNet-RN18.
We initialize backbone parameters with public parame-
terizations pre-trained on ImageNet. To reduce an ob-

served generalization drop when there is a longer period
of low learning rates at the end of training, we schedule
the learning rate according to e 7→ η cos(eπ/2), where
e ∈ [0..1] is the epoch index divided by the total num-
ber of epochs. We use η = 4 · 10−4 for randomly ini-
tialized and η = 10−4 for pre-trained parameters. We
use Adam with (β1, β2) = (0.9, 0.999). The L2 regu-
larization weight is 10−4 for randomly initialized and
2.5 · 10−5 for pre-trained parameters.

We perform classification experiments on CIFAR-
10 on WRN-28-2 with standard hyperparameters [35].
We augment all training images with standard random
flips and translations. We use (Bl, Bu) = (128, 640).
We train for 1000 epochs with |Dl| = 4000 in semi-
supervised, and 100 epochs in supervised training.

4.2 Semantic segmentation on Cityscapes

Table 1 compares our models with the state of the
art on half-resolution Cityscapes val. The top section
presents the previous work [5, 4, 27, 6]. The middle
section presents our experiments based on DeepLab v2
[19]. All these experiments use the same splits in order
to ensure fair comparison. The first row shows that our
experiment with the public code [6] reproduces their
accuracy. The last three rows show experiments with
our code. We use more training iterations than pre-
vious work since that would be a method of choice in
all practical applications. Hence, our performance is
consistently greater than in the first section of the ta-
ble. We enable fair comparison with [6] by plugging
their method into our training procedure. Under these
conditions, our MT-PhTPS outperforms MT-CutMix
with L2 loss and confidence thresholding for 1.8 to 2.7
percentage points (pp) with 1/4 to 1/1 of labels, while
undeperforming within variance with 1/8 of labels.

The bottom section presents experiments based
on SwiftNet-RN18 as mean and standard deviations
across 5 different subsets. The last two rows again
show that our perturbation model outperforms Cut-
Mix when 1/4 or more labels are available. Notably,
our perturbation model succeeds to improve upon the
fully supervised baseline for both backbones. We ob-
serve that DeepLab v2 gets more benefit from unsuper-
vised loss and comes out slightly better in most semi-
supervised experiments, in spite of being worse in the
supervised setup. This makes sense due to a stronger
backbone (ResNet-101 vs ResNet-18) and much more
capacity. Nevertheless, SwiftNet-RN18 comes out as a
clear method of choice for applications due to 12-fold
faster inference. We also note that Mean Teacher per-
forms comparably to simple consistency in experiments
with all labeled data.

4.3 Validation of consistency variants

Table 2 compares supervised baselines with 4 kinds
of unsupervised consistency on CIFAR-10 and half-
resolution Cityscapes. We investigate the following
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Proportion of labels used
Method 1/8 1/4 1/2 1/1

DL supervised [5, 6] 56.2 60.2 – 66.0
DL s4GAN [5] 59.3 61.9 65.8
DL AdvSemSeg [4] 58.8 62.3 65.7 67.7
DL ECS [27] 60.3 63.8 – 67.7
DL MT-CutMix [6] 60.31.2 63.90.7 – 67.70.4
DL supervised[6] 54.7 59.7 64.6 67.5
DL supervised 56.7 62.5 67.8 69.0
DL MT-CutMix∼[6] 62.4 65.0 67.6 69.0
DL MT-PhTPS 61.9 66.8 69.9 71.7
SN supervised 55.10.9 61.50.5 66.90.7 70.50.6
SN simple-CutMix 59.80.5 63.81.2 67.00.4 69.31.1
SN simple-PhTPS 62.73.5 65.31.9 68.50.6 71.40.6
SN MT-CutMix 59.31.3 63.31.0 66.80.6 69.70.5
SN MT-CutMix∼[6] 61.60.9 64.60.5 67.60.7 69.90.6
SN MT-PhTPS 62.01.3 66.01.0 69.10.5 71.20.7

Table 1. Semi-supervised semantic segmentation
accuracy (mIoU/%) on half-resolution Cityscapes
val with different proportions of labeled data.
The top section reviews experiments from previ-
ous work. The middle section presents our exper-
iments on a single dataset split with DeepLab v2
(DL). The first row uses code from [6], while other
rows use our code. The bottom section presents
experiments with our code on SwiftNet-RN18
(SN) and different consistency variants. Here we
run experiments on 3 random dataset splits. The
subscript ”∼[6]” denotes training with L2 loss,
confidence thresholding and α = 1 as proposed in
[6] instead of KL divergence with α = 0.5.

kinds of consistency: one-way with perturbed teacher
input (1w-pt), one-way with perturbed student input
(1w-ps), two-way with one perturbed input (2w-p1),
and one-way with both inputs perturbed (1w-p2). Note
that two-way consistency is not possible with Mean
Teacher. All experiments use PhTPS perturbations.
CIFAR-10 experiments train on 4000 labels and 50000
images. Cityscapes experiments correspond to the
setup from Table 1 based on SwiftNet-RN18. The table
shows that 1w-ps performs best, while 2w-p1 performs
in-between 1w-ps and 1w-pt. This supports the hy-
pothesis from 3.2, that predictions from unperturbed
inputs represent better targets for our unsupervised
loss. The 1w-p2 setup underperforms with respect to
the baseline, but often outperforms 1w-pt. A closer in-
spection reveals that 1w-p2 sometimes learns to cheat
the consistency loss by outputting similar predictions
in all perturbed images. This seems to occur more
often when batch normalization uses batch statistics.
However, we do not observe the cheating with CutMix.
The worst performer is 1w-pt with simple consistency.
A closer inspection of Cityscapes experiments reveals
severe overfitting to the training dataset as well as con-

sistency cheating.

Configuration sup. 1w-ps 1w-pt 2w-p1 1w-p2

simple-C10-4k 80.80.4 90.80.3 50.120.1 73.37.0 72.91.0
MT-C10-4k 80.80.4 90.80.4 80.50.5 - 73.41.4
simple-CS-1/4 61.50.5 65.31.9 1.61.0 16.73.0 61.80.8
MT-CS-1/4 61.50.5 66.01.0 61.51.4 - 61.81.0

Table 2. Comparison of 4 consistency vari-
ants under PhTPS perturbations: (1) one-way
with perturbed teacher input (1w-pt), (2) one-
way with perturbed student input (1w-ps), (3)
two-way with one input perturbed (2w-p1), and
(4) one-way with both inputs perturbed (1w-p2).
Algorithms are evaluated on CIFAR-10 test (ac-
curacy/%) while training on 4000 out of 50000 la-
bels (C10-4k) and half-resolution Cityscapes val
(mIoU/%) while training on 1/4 of labels from
Cityscapes train with SwiftNet-RN18 (CS-1/4).

Semi-supervised experiments on the CamVid
dataset [36] resulted in similar relations between con-
sistency variants from Table 2. However, a weaker un-
supervised loss with weaker perturbations was required
for improving upon the supervised baseline.

5 Conclusion

We have presented a method for semi-supervised se-
mantic segmentation which achieves competitive ac-
curacy in combination with two convolutional mod-
els. We show that one-way consistency with unper-
turbed teacher has two important advantages: i) it has
the same training footprint as the standard supervised
setup, and ii) it results in better generalization due to
learning with less noise. Experiments with many la-
beled images indicate that simple one-way consistency
may outperform Mean Teacher.

To the best of our knowledge, this is the first account
of semi-supervised semantic segmentation with efficient
models. This combination is essential for many practi-
cal real-time applications where there is a lack of large
datasets with suitable pixel-level groundtruth.

Suitable directions for future work include further
research in semi-supervised learning of efficient dense
prediction models. Mild memory requirements will
especially favor derivative works for semi-supervised
dense prediction in video.

Acknowledgements

This work has been supported by Croatian Science
Foundation, grant IP-2020-02-5851 ADEPT. This work
has also been supported by European Regional Devel-
opment Fund, grant KK.01.2.1.02.0119 DATACROSS,
and by VSITE College for Information Technologies
who provided access to 1 GPU Tesla-V100 32GB.



References

[1] Samuli Laine and Timo Aila. Temporal ensembling for
semi-supervised learning. In 5th International Confer-
ence on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceed-
ings. OpenReview.net, 2017.

[2] Antti Tarvainen and Harri Valpola. Mean teachers
are better role models: Weight-averaged consistency
targets improve semi-supervised deep learning results.
In Advances in neural information processing systems,
pages 1195–1204, 2017.

[3] Nasim Souly, Concetto Spampinato, and Mubarak Shah.
Semi supervised semantic segmentation using genera-
tive adversarial network. In IEEE International Con-
ference on Computer Vision, ICCV 2017, Venice, Italy,
October 22-29, 2017, pages 5689–5697. IEEE Com-
puter Society, 2017.

[4] Wei-Chih Hung, Yi-Hsuan Tsai, Yan-Ting Liou, Yen-
Yu Lin, and Ming-Hsuan Yang. Adversarial learning
for semi-supervised semantic segmentation. In BMVC,
page 65, 2018.

[5] S. Mittal, M. Tatarchenko, and T. Brox. Semi-supervi-
sed semantic segmentation with high- and low-level
consistency. IEEE Transactions on Pattern Analysis
and Machine Intelligence, pages 1–1, 2019.

[6] Geoffrey French, Samuli Laine, Timo Aila, Michal Mack-
iewicz, and Graham Finlayson. Semi-supervised se-
mantic segmentation needs strong, varied perturba-
tions. In BMVC, 2020.

[7] Gerda Bortsova, Florian Dubost, Laurens Hogeweg,
Ioannis Katramados, and Marleen de Bruijne. Semi-
supervised medical image segmentation via learning
consistency under transformations. In MICCAI, 2019.

[8] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama,
and Shin Ishii. Virtual adversarial training: A regu-
larization method for supervised and semi-supervised
learning. IEEE Trans. Pattern Anal. Mach. Intell.,
41(8):1979–1993, 2019.

[9] Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong,
and Quoc Le. Unsupervised data augmentation for
consistency training. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin, editors, Ad-
vances in Neural Information Processing Systems, vol-
ume 33, pages 6256–6268. Curran Associates, Inc., 2020.

[10] Marius Cordts, Mohamed Omran, Sebastian Ramos,
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