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Abstract

The automated image-based robust estimation of
crack widths in concrete structures forms a significant
component in the automation of structural health mon-
itoring. The proposed method, called rectangle trans-
form, uses the gray-scale profile extracted perpendicu-
larly to the direction of crack propagation. Based on
the concept of an idealized profile, it transforms the em-
pirical profile into an equal-area rectangle from which
the width is inferred. On the available dataset and com-
pared to two other approaches, it shows at least par
performance for widths larger two pixels and distinctly
better performance on widths smaller equal two pixels.
Moreover, it is more robust towards blurred input.

1 Introduction

The process of digitization in the field of civil en-
gineering is taking up pace [1, 2, 3]. With increasing
robustness and quality of data acquisition platforms –
such as e.g. drones – more and more domain relevant
data becomes available. One potential usage of the
growing amount of data is to advance the automation
of traditionally resource-intensive processes.

In the area of structural heath monitoring, advanced
image acquisition platforms can be used to capture high
quality imagery of the surface of critical infrastructure.
These images can serve various purposes, such as the
reconstruction of 3D models, maintaining a digital twin
of the structure, or the (semi-)automated detection of
defects. Among structural defects cracks form a class
of special interest as their length, width, shape, and
position offer significant insights into the structure’s
health.

In this work the focus is on the automated measure-
ment of the width of cracks based on their gray-scale
profile. In order to obtain the gray-scale profile, the
crack is assumed to have been tagged on the image –
automatically or manually – and the profile perpendic-
ular to the propagation direction of the crack to be
extracted. The process of crack detection [4, 5, 6] and
profile extraction is not part of this work.

The contribution of this work is threefold: (1) It
provides an analysis of empirically occurring gray-scale
profiles of cracks. (2) By the acquisition of specific data,
it attempts to bridge the gap between crack widths

measured manually on-site and on image level. And
(3) it provides a theoretically justified algorithm for
subpixel-accurate estimation of the crack width.

2 Related Work

The automated estimation of crack widths from im-
ages is an active research field for at least the last decade.
Many approaches rely on the accurate binarization of
the image while others use gray-scale profiles or proper
moments for width estimation.

Analogously to stroke width transform, [7] design a
crack width transform (CWT) method. Starting from
one edge, the algorithm determines the opposing edge
and allocates the width in between. The CWT shows
to be superior to line enhancement filtering as based on
Frangi [8], which amplifies high-frequency structures.
A similar edge-based procedure is applied in [9].

Different adaptive thresholding approaches for width
estimation are evaluated in [10]. Different window sizes
and sensitivity levels yield different binarized version
of the image. By extraction of the binary profile per-
pendicular to the direction of crack propagation, the
width can be directly inferred. The results are evalu-
ated against widths measured by means of an optical
microscope. Having three-dimensional data at hand
[11, 12] determine a binary representation of the data
by thresholding the local normal deviation from the
context normal. [13] obtain a binary representation of
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Figure 1: Normalized gray-scale profiles of cracks.
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Figure 2: Left: Measurement gauge for crack width.
Right: Extraction line for gray-scale profile perpendicu-
lar to the propagation direction of the crack.

the image by designing a convolutional neural network
with crack-like shaped kernels for crack detection. The
width is computed by Euclidean distance transform.
For [14] a percolation-based approach to crack detec-
tion [15, 16] returns a binary crack map. Alongside
this map and background correction, the crack width is
determined through a procedure of iterative thinning.

The approach by [17] makes use of the Zernike poly-
nomials [18]. Applying the zero-repetition second and
fourth order Zernike moment operator, a given crack
patch is rotation-invariantly transformed into complex-
valued polynomials. By integration the polynomials
yield a direct solution for crack width.

Based on the extraction of the gray-scale profile, [19]
propose an approach that relies on iteratively fitting a
parabola into the crack profile (parabola fitting). In the
first step, all values from the profile are removed that
lie within three standard deviations (i.e. 99.7%) of the
difference between profile and fitted parabola. In the
subsequent steps, values are removed that are outside
of three standard deviations.

Most of the approaches are designed for properly
sampled cracks, but struggle with crack widths smaller
than a couple of pixels. Furthermore, many approaches
have a noticeable number of hyperparameters that need
to be tuned. Also, some approaches lack robustness
with respect to the number of sampling points and
blurry input.

3 Data

In order to bridge the gap between synthetic and
real-world data, the acquisition of a dataset was concep-
tualized and conducted. It is based on the assumption,
that synthetic data can by no means model the imper-
fections in the image capturing process induced by e.g.
noise or effects related to camera lens or sensor.

3.1 Acquisition

The general procedure for capturing a sample for
the dataset was to manually measure a crack with the
measurement gauge. This gauge – shown in Figure 2
(left) – is 85mm wide and 53.5mm high and offers
width templates in steps of 0.05mm for smaller widths
(0.05 - 1.2mm) and larger and variously spaced steps for
widths from 1.3 - 3.0mm. Aligning the measured crack,
the gauge was attached to the structure and pictures
were taken from different distances and slightly different
(but still nearly orthogonal) perspectives. For image
capturing, a Sony Alpha 7R I with lenses of 55mm and
85mm was placed on a tripod.

The images then were manually annotated by mark-
ing salient points on the gauge and the placement of
the crack profile, cf. Figure 2. From the salient points
the resolutional translation from mm to px and, thus,
the expected crack width in px could be inferred.

As shown in Table 1 images were captured from four
different structures, 979 images in total. From each
crack measurement 8.5 images were taken on average.
The acquisition distance ranges between roughly 1 to
3m. The structures differ with respect to the number of
cracks measured at a structure and the average widths
of the cracks, which induces a bias towards crack widths
under 2 px.

3.2 Profile

In order to obtain an averaged representation of the
gray-scale profile of cracks, all 979 profiles are extracted.
For aligning all cracks, both x- and y-axis need to
undergo normalization. Given that wt is the true width,
g(x) the gray-scale function that maps from position
x to gray value g(x) and gc(x) = x + argminx g(x)
centers the profile around origin 0, then the following

Structure #Images
#Measure- Images per Width [mm] Width [px] Avg. Dis-

ments Measure. Mean Median Vari. Mean Median Vari. tance [m]
BridgeB 54 12 4.5 0.531 0.450 0.024 5.263 4.562 8.356 1.37
BridgeS 748 76 9.8 0.122 0.100 0.003 1.300 0.901 1.260 1.86
BridgeU 41 8 5.1 0.135 0.150 0.002 1.642 1.394 1.048 1.11
Indoors 136 19 7.2 0.475 0.500 0.057 3.333 2.966 4.579 1.82
Total 979 115 8.5 0.194 0.150 0.033 1.815 1.137 3.283 1.79

Table 1: Overview of the available data and the respective crack widths.



normalization was performed:

gnorm(x) =
gc(x/wt)−min g(x)

median(gc(x))−min g(x)

Figure 1 shows the average profiles alongside all pro-
files (light gray). Purple (dashed) represents the mean,
green (dash-dotted) the median profile, and blue (dot-
ted) the 80%-percentile. The profiles originate at the
centralized minimum and rather steeply and symmet-
rically gain height until saturating at around 1. The
mean reacting sensitively to low outliers is flatter in the
peripheral area, while the median and 80%-percentile
earlier reach the level of saturation. The red graph
represents the idealized profile of a crack with infinitely
steep flanks captured at virtually infinite sampling rate.

4 Rectangle Transform

The basis for the model-based approach is formed
by the concept of an idealized profile of a crack as
introduced in the last section and shown in Figure 1
(red). Based on the context gray value (a), the bottom
gray level (b), the right flank position (c), and the left
flank position (d), the width (w) of the crack and the
height (h) of the profile can be computed by:

h = a− b (1)

w = c− d (2)

If c and d are known, the width w can be directly
determined. For empirical cases, however, c and d are
typically unknown. Based on the assumption that h
and w form a rectangle with area A such that:

A = h · w (3)

w =
A

h
⇔ w =

A

a− b
(4)

an estimate for w, called ŵ, can be obtained through
estimates for A, a, and b:

ŵ =
Â

â− b̂
(5)

Reasonable, empirically sound estimates for a and b are
given by the reduced adapted median and the selective
minimum:

â = (median(g(x))−min(g(x))) · 0.9 +min(g(x)) (6)

b̂ = min(g(x), 20) (7)

For the bottom gray level, b̂ = 0 did not serve as
a good estimate, presumably because the amount of
light escaping the crack is larger zero. Empirically, 20
appeared a suitable value. For area Â holds (under
omission of integration constants):

Â =

∫

(â−min(g(x), â)) dx (8)

=

∫

â dx−

∫

min(g(x), â) dx (9)

= âx−

∫

g(x) + â− |g(x)− â|

2
dx (10)

= âx−
1

2

∫

(g(x) + â− |g(x)− â|) dx (11)

=
1

2

(

âx−

∫

(g(x)− |g(x)− â|) dx

)

(12)

Thus, ŵ can be determined from estimates for A, a,
and b without recourse to the unknowns c and d:

ŵ =
âx−

∫

(g(x)− |g(x)− â|) dx

2(â− b̂)
(13)

Widthw
Approach

MAE
MAPE

Response Tolerance Interval [mm]
[px] [px] [mm] Rate ≤0.025 ≤0.05 ≤0.1 ≤0.2

0 < w ≤ 2
Intersect 0.627 0.234 1.900 99.6% 20% 34% 60% 93%
Parabola 0.778 0.117 0.760 7.7% 3% 4% 7% 94%
Rectangle 0.273 0.105 0.782 100.0% 53% 78% 92% 98%

2 < w ≤ 15
Intersect 0.905 0.087 0.222 100.0% 21% 41% 67% 91%
Parabola 1.098 0.114 0.271 85.4% 19% 43% 63% 90%
Rectangle 0.572 0.055 0.146 100.0% 38% 67% 86% 97%

0 < w ≤ 15
Intersect 0.709 0.191 1.405 99.7% 20% 36% 62% 93%
Parabola 1.042 0.114 0.357 30.5% 8% 16% 23% 91%
Rectangle 0.361 0.091 0.595 100.0% 49% 75% 91% 97%

0 < w ≤ 15,
blur, σ = 2

Intersect 2.083 0.412 3.664 99.0% 7% 12% 21% 37%
Parabola 1.866 0.168 0.377 14.1% 0% 1% 6% 64%
Rectangle 0.416 0.093 0.568 100.0% 35% 67% 90% 98%

0 < w ≤ 15,
blur, σ = 4

Intersect 4.098 0.736 6.264 95.0% 1% 3% 7% 20%
Parabola 4.131 0.336 0.421 0.9% 0% 0% 0% 33%
Rectangle 0.798 0.119 0.678 100.0% 14% 33% 70% 91%

Table 2: Overview of the results for different approaches and crack widths.



Conceptually, the approach transforms the area inside
the “sink” of the crack profile into an equal-area rectan-
gle. This rectangle is presumed to resemble the alleged
original signal. Rectangle transform, thus, appears
to be a descriptive name for the approach.

5 Evaluation

Table 2 provides an overview of the results. It shows
the performance of the three approaches näıve inter-
section(“Intersect”), parabola fitting (“Parabola”), and
rectangle transformation (“Rectangle ) with respect to
different crack widths and levels of Gaussian blur. In
parabola fitting [19], gray values undergo a statistically-
guided, iterative removal and a parabola is fit on the
remaining values. The width is estimated based on the
intersection of the fitted parabola and the 50% mean
intensity value. The näıve intersection approach also
relies on intersection for width estimation. It, however,
intersects the intensity profile itself, rather than a fitted
function, with the 30% adapted median of the profile.

MAE refers to the mean average error, MAPE to
the mean average percentage error which relates the
error to the ground truth value. Since many values are
located in the range of -1 and 1, the MAE occurs a more
reasonable measure than the mean squared error. The
response rate describes the share of data for which an
estimate was returned. The tolerance interval denotes
the proportion of responses within the given interval.
Note that the interval ≤ 0.025 can be considered to
reflect the unavoidable measurement inaccuracy induced
by the stepping properties of the measurement gauge.

With respect to widths less or equal 2 px, the rect-
angle approach provides the only robust estimate. It
shows the lowest MAE and has a perfect response rate.
The MAPE is comparable to the parabola approach,
which, however, has a noticeably low response rate of
8%. Also with respect to the tolerance interval, rect-
angle surpasses the other approaches with 98% for
the 0.2mm interval. For widths larger than 2 px, all
approaches have lower MAPE, i.e. perform better in
relative terms. As far as response rates are concerned,
only the intersection and rectangle approach achieve
100% while the parabola secedes. One reason for the
better average performance for wider cracks is poten-
tially rooted in the sampling theorem, according to
which only cracks wider 2 px are properly sampled [20].
The aggregated results for widths 0 to 15 px confirm the
superiority of rectangle transform for the given dataset.

Even though undesired, lack of image sharpness regu-
larly occurs in images and genuinely impedes the width
estimation. To simulate lack of sharpness, Gaussian blur
was applied on the gray-scale profile. When confronted
with blurred input (Table 2, bottom) all approaches
degrade in performance. The only approach producing
relatively consistent estimates is rectangle transform
while intersection and parabola approach deteriorate.

Figure 3 depicts the relation of widths between 0 px
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Figure 3: Overview of the performance.

and 6 px and the MAE. The clustered predictions for
widths less 2 px exemplify the bias in the data towards
smaller widths. For this range the estimates from the
rectangle approach cluster around zero MAE, while the
intersection approach shows a tendency for overesti-
mation. The parabola approach only sparsely returns
estimates for width smaller than 2 px which corresponds
to its low response rate for this range. For widths larger
2 px the variance increases for all approaches with a
general tendency to slight underestimation.

6 Conclusion

The experimental results demonstrate the higher ro-
bustness of the rectangle transform compared to näıve
intersection and parabola fitting. This robustness refers
to the quality of measurements for blurred inputs as
well as the generally perfect response rate. However,
these results are obtained in a relatively restrictive setup
with one type of camera. It is unclear in how far the
parameters require adaptation in order to achieve equal
performance in a different setup. The theoretical deriva-
tion, hopefully, provides a solid basis for generalization.

For all approaches holds, the wider the cracks in
pixels and the lower the blur, the better the estimate.
Thus, for practical purposes it is advisable to capture
cracks as close and as well resolved as possible, rather
than pushing acquisition to the photographic limits.

Despite the many advantages that theory-driven ap-
proaches have, data-driven ones hold the potential for
better estimates given that a large and representative
dataset is available. The acquisition procedure proposed
here comes with a multitude of flaws. It, however, is (to
the best of our knowledge) the first honest, wide-range
attempt to bridge the gap between image level and
manual onsite measurement. With more data at hand,
convolutional learning approaches that directly operate
on image level rather than gray-scale profiles become
in graspable range.
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