
Encoding-free Incrementing Hough Transform for High Frame Rate

and Ultra-low Delay Straight-line Detection

Ziwei Dong1, Tingting Hu1, 2, Ryuji Fuchikami2, Takeshi Ikenaga1

Graduate School of Information, Production and Systems, Waseda University1

Kitakyushu, 808-0135, Japan
Panasonic Corporation2

Fukuoka, 812-8531, Japan
zwdong@fuji.waseda.jp

Abstract

High frame rate and ultra-low delay straight-line detec-
tion plays an increasingly important role in highly
automated factories that call for straight-line features to
achieve swift locations in real scenes. However, vision sys-
tems based on CPU/GPU have a fixed delay between image
capture and detection, making straight-line detection chal-
lenging to reach an ultra-low delay. Achieving detection
nearly simultaneous with capture on the same image is con-
sidered. This paper proposes (A) an encoding-free
incrementing Hough transform and (B) a partially com-
pressed line parameter space to implement a straight-line
detection core on an FPGA board. The encoding-free in-
crementing Hough transform directly calculates line
parameters only by incrementing and initialization while
capturing an image. Furthermore, the partially compressed
line parameter space reduces the required memory re-
sources and the path delay under the premise of accurate
vote recordings for every line feature. The evaluation result
shows that the proposals achieve as accurate detection
(RMSE of θ on 0.0057, and RMSE of ρ on 2.09) as standard
Hough transform (RMSE of θ on 0.0057, and RMSE of ρ on
2.13) and the designed detection core processes VGA
(640×480) videos at 1.358 ms/frame delay.

1. Introduction and related works

Straight lines give important geometric information in
images. It is one of the most prominent geometric features,
especially in human-made objects [1]. To detect straight
lines has been required by many visual systems, such as lo-
calization [2] and inspection [3] systems. Unlike a straight-
line detection system for static images or usual real-time
videos (e.g., 60 fps), a high frame rate and ultra-low delay
straight-line detection system helps with a swifter and ac-
curate location. However, vision systems based on
CPU/GPU have a fixed delay between the whole frame cap-
ture and detection, making straight-line detection
challenging to reach an ultra-low delay. An ultra-low delay
straight-line detection core that works near-simultaneously
with capture on the same frame becomes a pivotal solution
to minimize the delay.

Standard Hough Transform (SHT) [4] is a widely used
method for straight-line detection. The straight-line feature

utilized by SHT contains a line’s perpendicular distance to
the image origin (𝜌) and a line’s normal direction (𝜃). Line
features are detected by counting the number of edge pixels
contribute to them in a line parameter space. Many research
works have proved that SHT has the character of highly
parallel that is suitable for high-speed implementation on
an FPGA board [5][6][7]. Besides, Hough transform in-
volves accumulating votes in memory that is generally not
suitable for real-time processing. However, if using a large
amount of built-in SRAM of the FPGA in parallel, real-time
processing is possible at a fixed rate.

There are many designs for Hough Transform FPGA im-
plementation. For example, an incrementing property of the
Hough transform in [8] achieves efficient, simplified per-
pendicular distance calculation. However, it requires the
encoded information acquired from an edge image that be-
comes an obstacle to reach an ultra-low delay in real scenes.
The work [9][10] aim at optimizing line parameter space
size. Reducing the size of the line parameter space reaches
hardware resource-efficient and the operations in memory
space with lower delay. However, the compression in these
works brings a higher probability of false detection while
reducing required resources.

By taking advantage of the highly parallel character of
the Hough transform, this paper targets a high frame rate
and ultra-low delay straight-line detection core imple-
mented on an FPGA board. An encoding-free incrementing
Hough transform is utilized to remove the extra encoding
delay and keep simplified incrementing calculation for per-
pendicular distances. A partially compressed line parameter
space is proposed to reduce the path delay of the line pa-
rameter space on hardware.

2. Proposals

This section shows the two proposals for the ultra-low
delay straight-line detection core structure. Figure 1 shows
the structure. By receiving the grayscale image pixels as in-
put, an edge detector (using the CORDIC algorithm) is
firstly utilized to acquire the edge and gradient information
in an image. Next, the edge pixel stream output by the edge
detector is input to the distance calculation part. Then, the
gradient information and the calculated perpendicular dis-
tance are input to the line parameter space. The line
detection system continuously works by directly processing

17th International Conference on Machine Vision Applications (MVA)
Fully Online, July 25–27, 2021.

© 2021 MVA Organization

P2-15

the image stream while capturing images and outputs de-
tected line features without an extra delay.

Figure 1. The structure of the straight-line detection core

2.1. Encoding-free incrementing Hough transform

One of the reasons that SHT works slowly to detect lines
is a large amount of sequential calculation. In order to speed
up the detection, an incrementing property with a run-
length encoding of Hough Transform is proposed by Chen
et al. [8]. The incrementing property here indicates the per-
pendicular distances under the same normal direction can
be acquired by incrementing operation using equation (2)
rather than the original in equation (1). The work [8] imple-
ments the commonly used parallel character of Hough
transform (the parallel calculation of the perpendicular dis-
tances (𝜌) under each discrete normal direction (𝜃) of lines)
and the incrementing property with a run-length encoding
that improves the calculation efficiency. The incrementing
calculation part introduced in [8] receives the pre-encoded
image information from edge images that are divided into
blocks (area of several neighbor pixels). The merit of the
incrementing operation is that it can significantly simplify
the calculation in Hough transform to speed up the pro-
cessing. Besides, the run-length encoder used in this work
can skip the non-edge block to acquire more refined edge
information to improve the throughput of the incrementing
calculation part. Algorithm 1 shows how it processes block
by block.

𝜌𝜃(𝑥, 𝑦) = 𝑥 cos 𝜃 + 𝑦 sin 𝜃 (1)

𝜌𝜃(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦) = 𝜌𝜃(𝑥, 𝑦) + 𝑑𝑥 cos 𝜃 + 𝑑𝑦 sin 𝜃 (2)

for all encoded block information i of an image,

parallel part
under all normal direction of line 𝜃 (0° ≤ 𝜃 < 180°),

for each edge feature j in the encoded information
𝜌𝑖𝑗 = 𝜌𝑖0 + ⌊𝑓0 + a cos 𝜃 + 𝑏 sin 𝜃⌋
Line_Parameter_Space (𝜃, 𝜌𝑖𝑗) += 1

end for
end parallel part

end for

𝑓0: fractional part of the incrementing offset
𝑎, 𝑏: relative position in the image block

Algorithm 1. Incrementing using encoded information

This method efficiently processes a still image by acquir-
ing the encoded information from the whole image in
advance. However, when applied to high-frame-rate video

in real scenes, the extra encoding time for every frame
causes a delay or extra buffer during processing. Besides,
the clock cycles for processing one frame is uncertain by
using encoded information, which is unstable for different
input frame.

Based on the efficient calculation of the incrementing
property, an encoding-free incrementing Hough transform
is proposed. It directly processes a pixel stream from a cap-
turing image rather than using the in advance encoded
information from image blocks. The edge detector in the
design executes the detection on a delivered pixel stream
without finishing capturing a whole image. At the same
time, the encoding-free calculation directly deals with the
edge pixel stream from the edge detector. Before the stream
of a new frame comes to the calculation part, the perpen-
dicular distance will be initialized to 0. When the stream
comes row by row (or column by column), the perpendicu-
lar distance will be incremented 𝑑𝑥 𝑐𝑜𝑠 𝜃 (𝑜𝑟 𝑑𝑦𝑠𝑖𝑛𝜃) .
When the next row (or next column) comes, the perpendic-
ular base distance will be incremented
𝑑𝑦𝑠𝑖𝑛 𝜃 (𝑜𝑟 𝑑𝑥𝑐𝑜𝑠𝜃). Three states in Figure 2 are defined
to control the incrementing calculation. Gradient directions
acquired from the edge detector reduce the access times of
line parameter space and I/O resources. Figure 3 shows the
structure comparison between incrementing with encoding
and without encoding.

Figure 2. incrementing state controller

Figure 3. Comparison of incrementing structure with
run-length encoding and proposed encoding-free

2.2. Partially Compressed Line Parameter Space

The large line parameter space used by the Hough trans-

form is the main reason for memory resource consumption.
From the view of hardware design, a larger size memory

leads to longer path delay. However, to compress a line pa-
rameter space should consider the trade-off between false
detection and space size. The research work in [10] com-
presses the line parameter space by overlapping the normal
directions. Moreover, according to the observation in [10],
compressing the space less than 1/4 of the original one will
cause unacceptable false detections. Utilizing this method
will save many memory resources. It is acceptable in con-
ventional scenes, which can accept a few false detections.
However, for scenes that require no apparent false detection,
it will be unsuitable since there is unavoidable false detec-
tion caused by the conflicting appearance of different line
parameters which share the same cell in the line parameter
space.

Inspired by the idea in [10], which reduces memory re-

sources, a partially compressed line parameter space

without the conflicting appearance is proposed. Unlike

compressing the normal directions of lines to reduce the

memory size, the line parameter space is partially com-

pressed by overlapping the perpendicular distances of lines

in the parameter space. The idea that perpendicular dis-

tances under a normal direction of lines could be

overlapped is derived from observing the appearance of

line features in images. When a pixel stream from an image

is input row by row (or column by column), it can be ob-

served that some line features appear at different periods.

For example, in Figure 4, when the pixels comes row by

row, the last pixel contributes to the straight-line feature

(θ, 𝜌1) appears before the first pixel contributes to the fea-

ture (θ, 𝜌2). Thus, the line features like the example can use

the same parameter cell in the line parameter space. The

relationships of two-line features that can share the same

parameter cell are listed below.

Figure 4. Example of line features that can share the

same parameter cell in parameter space

For two lines under the same normal direction in an image:

𝐿𝑖𝑛𝑒1: 𝜌1 = sin 𝜃 𝑦1 + cos 𝜃 𝑥1
𝐿𝑖𝑛𝑒2: 𝜌2 = sin 𝜃 𝑦2 + cos 𝜃 𝑥2

When 0 < 𝜃 ≤
𝜋

2
 and 0 < 𝜌1 ≤ 𝜌2, Line1 and Line2 can

share the same parameter cell if and only if they appear at

different time. While the image is input row by row, it

means that the y coordinate of the last pixel contributes to

Line1 must be smaller or equal to the y coordinate of the

first pixel contributes to Line2 as (3) shows:

𝜌1

sin 𝜃
 ≤ −

cos𝜃

sin 𝜃
× 𝑤 +

𝜌2

sin 𝜃
 (3)

𝜌2 − 𝜌1 ≥ cos 𝜃 × 𝑤 (4)

In the same way, when
𝜋

2
< 𝜃 < 𝜋 and 𝜌1 ≤ 0 ≤ 𝜌2 ,

these line features can share the same parameter cell if and

only if

𝜌2 − 𝜌1 ≥ −cos 𝜃 × 𝑤 (5)

Equations (4) and (5) show the relationship the line fea-

tures should meet to share the same line parameters. The

space size to be compressed can be ∑ cos 𝜃 × w𝜋−∆𝜃
𝜃=0

when image width w is greater than or equal to image height

h. In the case of image width w is less than image height h,

input image column by column performs the same space

compression.
Because the VGA (640×480) video is used to test the

designed frame process core and row by row is used. In the
design, the relationship 𝜌2 − 𝜌1 ≥ 𝑤 , which meets the
conditions in both (4) and (5), is chosen to compress the
line parameter space partially. It reduces the required
memory address space. Figure 5 shows the partially com-
pressed line parameter space, where 𝜌2 − 𝜌1 ≥ 𝑤. Using
𝜌2 − 𝜌1 ≥ 𝑤 compresses the space at most to 1/√2 of the
smallest original size (when image width equals height and
image origin is on the center).

Figure 5. The line parameter space before partial com-

pression and after partial compression

3. Evaluation Result

3.1. Image data

450 straight-line images are utilized to evaluate the ac-
curacy. The images are generated by the line function in
OpenCV, including all discrete normal directions (𝜃 ∈
[0, 𝜋), ∆𝜃 = 1°) of straight lines and selected perpendicu-
lar distances (∆𝜌 = 1) . Gaussian noises and pepper salt
noises are added to the images. Each image contains 1 line
with a line parameter (ground truth). The line type is the
anti-aliased line. Figure 6 shows 2 sample images in the set.

Figure 6. Samples of straight-line images

0

2

2
+

0 2 + 2

0

0

si :w

2

2
+

3.2. Detection accuracy

In order to evaluate the accuracy, the root mean square

error (RMSE) √
1

𝑁
∑ (𝑟𝑒𝑠𝑢𝑙𝑡𝑖 − 𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ𝑖

)2𝑁
𝑖=1 is

measured. The standard Hough transform, the work using

the incrementing property with run-length encoding [12],

the work proposing compressed line parameter space [14],

and the proposed methods in this paper are evaluated. The

evaluation results are shown in Table 1. The lower error in-

dicates the higher accuracy. The results show that the

proposed methods for high frame rate and ultra-low delay

processing can also keep accurate detection as standard

Hough transform.

 Table 1. The evaluation result of root-mean-square error

3.3. Hardware performance and resource usage

The whole structure of the straight-line detection core
works on FPGA Xilinx Kintex-7 XC7K325T at the maxi-
mum frequency of 226.757MHz. It requires 3.061 𝜇s for a
pixel to travel through the straight-line detection core. The
processing time for one frame (640◊480) is 1.358ms.

The resource utilization on the FPGA design is shown in
Table 2. The maximum frequency that the implementation
can work on is shown in Table 3.

Table 2. Resource usage of the proposed design

Table 3. The maximum frequency of the designed detec-
tion core after using partially compressed line parameter

space

4. Conclusion

In this paper, an ultra-low delay straight-line detection

core based on the Hough transform is implemented. The
designed detection core can directly detect straight lines
while capturing high-frame-rate real-time grayscale image
frames.

This work targets accurate high-speed line detection that
can be contributed to visual systems in highly automated
factories. Two ideas are proposed to reach ultra-low delay
processing. Firstly, an encoding-free incrementing Hough
transform is utilized to remove the extra processing delay
on video. Secondly, a partially compressed line parameter
space is proposed to reduce the path delay on hardware.

As a result, the proposed structure works at 1.358ms de-
lay with the resolution of 640◊480.

Acknowledgement

This work was supported by KAKENHI (21K11816).

References

[1] J. H. Lee, G. Zhang, J. Lim, and I. H. Suh, "Place recognition

using straight lines for vision-based SLAM," IEEE Interna-

tional Conference on Robotics and Automation, 2013.

[2] O. A. Aider, P. Hoppenot, and E. Colle, "A model-based

method for indoor mobile robot localization using monocular

vision and straight-line correspondences," Robotics and Au-

tonomous Systems, 2005.

[3] S. Mahadevan, and D. P. Casasent, "Detection of triple junc-

tion parameters in microscope images," Proc. SPIE. Vol. 4387,

2001.

[4] R. O. Duda, and P. E. Hart, "Use of the Hough transformation

to detect lines and curves in pictures," Communications of the

ACM, vol.15.1, pp.11-15, 1972.

[5] M. Nakanishi, and T. Ogura, "A real-time CAM-based Hough

transform algorithm and its performance evaluation," Pro-

ceedings of 13th International Conference on Pattern

Recognition, vol.2, pp.516-521, 1996.

[6] X. Zhou, Y. Ito, and K. Nakano, "An efficient implementation

of the gradient-based Hough transform using DSP slices and

block RAMs on the FPGA," IEEE International Parallel &

Distributed Processing Symposium Workshops, 2014.

[7] S. M. Karabernou, and F. Terranti, "Real-time FPGA imple-

mentation of Hough Transform using gradient and CORDIC

algorithm," Image and Vision Computing, vol.23.11 pp.1009-

1017, 2005.

[8] Z. Chen, A. W. Su, and M. Sun, "Resource-efficient FPGA ar-

chitecture and implementation of Hough transform," IEEE

Transactions on Very Large Scale Integration (VLSI) Systems

vol.20.8, 2011.

[9] P. Ser, and W. Siu, "Memory compression for straight line

recognition using the Hough transform," Pattern recognition

letters vol.16.2, pp.133-145, 1995.

[10] D. Northcote, L. H. Crockett, and P. Murray, "FPGA imple-

mentation of a memory-efficient Hough Parameter Space

for the detection of lines," 2018 IEEE International Sympo-

sium on Circuits and Systems (ISCAS), IEEE, 2018

Method error 𝜃
(rad)

error 𝜌
(pixel)

Standard HT 0.0057 2.13
Chen et al. VLSI 2011 0.0057 2.35
Northcote et al. ISCAS 2018 0.0119 2.02
proposal 1 + original space 0.0057 2.08
proposal 1 + proposal 2 0.0057 2.09

 Used Total Percentage

of Slice LUTs 5717 203,800 2.81%
of Slice registers 6010 407,600 1.47%
of occupied slices 1653 50,950 0.03%
of Block RAM Tiles 26 445 5.84%
of bonded IOBs 62 500 12.40%
of BUFGCTRLs 1 32 0.03%

 proposal 1+
original space

proposal 1 +
proposal 2

Maximum frequency
(MHz)

209.555 226.757

