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Abstract 

High frame rate and ultra-low delay straight-line detec-
tion plays an increasingly important role in highly 
automated factories that call for straight-line features to 
achieve swift locations in real scenes. However, vision sys-
tems based on CPU/GPU have a fixed delay between image 
capture and detection, making straight-line detection chal-
lenging to reach an ultra-low delay. Achieving detection 
nearly simultaneous with capture on the same image is con-
sidered. This paper proposes (A) an encoding-free 
incrementing Hough transform and (B) a partially com-
pressed line parameter space to implement a straight-line 
detection core on an FPGA board. The encoding-free in-
crementing Hough transform directly calculates line 
parameters only by incrementing and initialization while 
capturing an image. Furthermore, the partially compressed 
line parameter space reduces the required memory re-
sources and the path delay under the premise of accurate 
vote recordings for every line feature. The evaluation result 
shows that the proposals achieve as accurate detection 
(RMSE of θ on 0.0057, and RMSE of ρ on 2.09) as standard 
Hough transform (RMSE of θ on 0.0057, and RMSE of ρ on 
2.13) and the designed detection core processes VGA 
(640×480) videos at 1.358 ms/frame delay. 

1. Introduction and related works 

Straight lines give important geometric information in 
images. It is one of the most prominent geometric features, 
especially in human-made objects [1]. To detect straight 
lines has been required by many visual systems, such as lo-
calization [2] and inspection [3] systems. Unlike a straight-
line detection system for static images or usual real-time 
videos (e.g., 60 fps), a high frame rate and ultra-low delay 
straight-line detection system helps with a swifter and ac-
curate location. However, vision systems based on 
CPU/GPU have a fixed delay between the whole frame cap-
ture and detection, making straight-line detection 
challenging to reach an ultra-low delay. An ultra-low delay 
straight-line detection core that works near-simultaneously 
with capture on the same frame becomes a pivotal solution 
to minimize the delay. 

Standard Hough Transform (SHT) [4] is a widely used 
method for straight-line detection. The straight-line feature 

utilized by SHT contains a line’s perpendicular distance to 
the image origin (𝜌) and a line’s normal direction (𝜃). Line 
features are detected by counting the number of edge pixels 
contribute to them in a line parameter space. Many research 
works have proved that SHT has the character of highly 
parallel that is suitable for high-speed implementation on 
an FPGA board [5][6][7]. Besides, Hough transform in-
volves accumulating votes in memory that is generally not 
suitable for real-time processing. However, if using a large 
amount of built-in SRAM of the FPGA in parallel, real-time 
processing is possible at a fixed rate. 

There are many designs for Hough Transform FPGA im-
plementation. For example, an incrementing property of the 
Hough transform in [8] achieves efficient, simplified per-
pendicular distance calculation. However, it requires the 
encoded information acquired from an edge image that be-
comes an obstacle to reach an ultra-low delay in real scenes. 
The work [9][10] aim at optimizing line parameter space 
size. Reducing the size of the line parameter space reaches 
hardware resource-efficient and the operations in memory 
space with lower delay. However, the compression in these 
works brings a higher probability of false detection while 
reducing required resources. 

By taking advantage of the highly parallel character of 
the Hough transform, this paper targets a high frame rate 
and ultra-low delay straight-line detection core imple-
mented on an FPGA board. An encoding-free incrementing 
Hough transform is utilized to remove the extra encoding 
delay and keep simplified incrementing calculation for per-
pendicular distances. A partially compressed line parameter 
space is proposed to reduce the path delay of the line pa-
rameter space on hardware. 

2. Proposals 

This section shows the two proposals for the ultra-low 
delay straight-line detection core structure. Figure 1 shows 
the structure. By receiving the grayscale image pixels as in-
put, an edge detector (using the CORDIC algorithm) is 
firstly utilized to acquire the edge and gradient information 
in an image. Next, the edge pixel stream output by the edge 
detector is input to the distance calculation part. Then, the 
gradient information and the calculated perpendicular dis-
tance are input to the line parameter space. The line 
detection system continuously works by directly processing 
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the image stream while capturing images and outputs de-
tected line features without an extra delay. 

 

 
Figure 1.  The structure of the straight-line detection core 

 

2.1. Encoding-free incrementing Hough transform 
 

One of the reasons that SHT works slowly to detect lines 
is a large amount of sequential calculation. In order to speed 
up the detection, an incrementing property with a run-
length encoding of Hough Transform is proposed by Chen 
et al. [8]. The incrementing property here indicates the per-
pendicular distances under the same normal direction can 
be acquired by incrementing operation using equation (2) 
rather than the original in equation (1). The work [8] imple-
ments the commonly used parallel character of Hough 
transform (the parallel calculation of the perpendicular dis-
tances (𝜌) under each discrete normal direction (𝜃) of lines) 
and the incrementing property with a run-length encoding 
that improves the calculation efficiency. The incrementing 
calculation part introduced in [8] receives the pre-encoded 
image information from edge images that are divided into 
blocks (area of several neighbor pixels). The merit of the 
incrementing operation is that it can significantly simplify 
the calculation in Hough transform to speed up the pro-
cessing. Besides, the run-length encoder used in this work 
can skip the non-edge block to acquire more refined edge 
information to improve the throughput of the incrementing 
calculation part. Algorithm 1 shows how it processes block 
by block. 

 
𝜌𝜃(𝑥, 𝑦) = 𝑥 cos 𝜃 + 𝑦 sin 𝜃     (1) 

 

𝜌𝜃(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦) = 𝜌𝜃(𝑥, 𝑦) + 𝑑𝑥 cos 𝜃 + 𝑑𝑦 sin 𝜃    (2) 

 

 
for all encoded block information i of an image, 

parallel part 
under all normal direction of line 𝜃 ( 0° ≤ 𝜃 < 180°), 

for each edge feature j in the encoded information 
𝜌𝑖𝑗 = 𝜌𝑖0 + ⌊𝑓0 + a cos 𝜃 + 𝑏 sin 𝜃⌋ 
Line_Parameter_Space (𝜃, 𝜌𝑖𝑗) += 1 

end for 
end parallel part 

end for 
 
𝑓0: fractional part of the incrementing offset 
𝑎, 𝑏: relative position in the image block 

 
Algorithm 1. Incrementing using encoded information 
 

This method efficiently processes a still image by acquir-
ing the encoded information from the whole image in 
advance. However, when applied to high-frame-rate video 

in real scenes, the extra encoding time for every frame 
causes a delay or extra buffer during processing. Besides, 
the clock cycles for processing one frame is uncertain by 
using encoded information, which is unstable for different 
input frame.  

Based on the efficient calculation of the incrementing 
property, an encoding-free incrementing Hough transform 
is proposed. It directly processes a pixel stream from a cap-
turing image rather than using the in advance encoded 
information from image blocks. The edge detector in the 
design executes the detection on a delivered pixel stream 
without finishing capturing a whole image. At the same 
time, the encoding-free calculation directly deals with the 
edge pixel stream from the edge detector. Before the stream 
of a new frame comes to the calculation part, the perpen-
dicular distance will be initialized to 0. When the stream 
comes row by row (or column by column), the perpendicu-
lar distance will be incremented 𝑑𝑥 𝑐𝑜𝑠 𝜃  (𝑜𝑟 𝑑𝑦𝑠𝑖𝑛𝜃) . 
When the next row (or next column) comes, the perpendic-
ular base distance will be incremented 
𝑑𝑦𝑠𝑖𝑛 𝜃 (𝑜𝑟 𝑑𝑥𝑐𝑜𝑠𝜃). Three states in Figure 2 are defined 
to control the incrementing calculation. Gradient directions 
acquired from the edge detector reduce the access times of 
line parameter space and I/O resources. Figure 3 shows the 
structure comparison between incrementing with encoding 
and without encoding. 
 

 
Figure 2. incrementing state controller 

 

 
Figure 3. Comparison of incrementing structure with 
run-length encoding and proposed encoding-free 

 

2.2. Partially Compressed Line Parameter Space 

 
The large line parameter space used by the Hough trans-

form is the main reason for memory resource consumption. 
From the view of hardware design, a larger size memory 

          

        
        

     
            

                                 

              

               

                          

          

          

 

     

        

 

 

     

        

                    

                   

                                                     

                                                               

     
         

 
      

    
     

         

 

 

 

              
             
               

          
                
               

 



leads to longer path delay. However, to compress a line pa-
rameter space should consider the trade-off between false 
detection and space size. The research work in [10] com-
presses the line parameter space by overlapping the normal 
directions. Moreover, according to the observation in [10], 
compressing the space less than 1/4 of the original one will 
cause unacceptable false detections. Utilizing this method 
will save many memory resources. It is acceptable in con-
ventional scenes, which can accept a few false detections. 
However, for scenes that require no apparent false detection, 
it will be unsuitable since there is unavoidable false detec-
tion caused by the conflicting appearance of different line 
parameters which share the same cell in the line parameter 
space.  

Inspired by the idea in [10], which reduces memory re-

sources, a partially compressed line parameter space 

without the conflicting appearance is proposed. Unlike 

compressing the normal directions of lines to reduce the 

memory size, the line parameter space is partially com-

pressed by overlapping the perpendicular distances of lines 

in the parameter space. The idea that perpendicular dis-

tances under a normal direction of lines could be 

overlapped is derived from observing the appearance of 

line features in images. When a pixel stream from an image 

is input row by row (or column by column), it can be ob-

served that some line features appear at different periods. 

For example, in Figure 4, when the pixels comes row by 

row, the last pixel contributes to the straight-line feature 

(θ, 𝜌1) appears before the first pixel contributes to the fea-

ture (θ, 𝜌2). Thus, the line features like the example can use 

the same parameter cell in the line parameter space. The 

relationships of two-line features that can share the same 

parameter cell are listed below. 
 

 
Figure 4. Example of line features that can share the 

same parameter cell in parameter space 
 
For two lines under the same normal direction in an image: 
 

𝐿𝑖𝑛𝑒1: 𝜌1 = sin 𝜃 𝑦1 + cos 𝜃 𝑥1 
𝐿𝑖𝑛𝑒2: 𝜌2 = sin 𝜃 𝑦2 + cos 𝜃 𝑥2 

 

When 0 < 𝜃 ≤
𝜋

2
 and 0 < 𝜌1 ≤ 𝜌2, Line1 and Line2 can 

share the same parameter cell if and only if they appear at 

different time. While the image is input row by row, it 

means that the y coordinate of the last pixel contributes to 

Line1 must be smaller or equal to the y coordinate of the 

first pixel contributes to Line2 as (3) shows: 

 
𝜌1

sin 𝜃
 ≤ −

cos𝜃

sin 𝜃
× 𝑤 + 

𝜌2

sin 𝜃
            (3) 

 

𝜌2 − 𝜌1 ≥ cos 𝜃  × 𝑤  (4) 

 

In the same way, when 
𝜋

2
< 𝜃 < 𝜋  and 𝜌1 ≤ 0 ≤ 𝜌2 , 

these line features can share the same parameter cell if and 

only if 

𝜌2 − 𝜌1 ≥ −cos 𝜃  × 𝑤  (5) 

 

Equations (4) and (5) show the relationship the line fea-

tures should meet to share the same line parameters. The 

space size to be compressed can be ∑ cos 𝜃 × w𝜋−∆𝜃
𝜃=0  

when image width w is greater than or equal to image height 

h. In the case of image width w is less than image height h, 

input image column by column performs the same space 

compression. 
Because the VGA (640×480) video is used to test the 

designed frame process core and row by row is used. In the 
design, the relationship 𝜌2 − 𝜌1 ≥ 𝑤 , which meets the 
conditions in both (4) and (5), is chosen to compress the 
line parameter space partially. It reduces the required 
memory address space. Figure 5 shows the partially com-
pressed line parameter space, where 𝜌2 − 𝜌1 ≥ 𝑤. Using 
𝜌2 − 𝜌1 ≥ 𝑤 compresses the space at most to 1/√2 of the 
smallest original size (when image width equals height and 
image origin is on the center).  

 

 
Figure 5. The line parameter space before partial com-

pression and after partial compression 
 
3.  Evaluation Result 
 
3.1.  Image data 
 

450 straight-line images are utilized to evaluate the ac-
curacy. The images are generated by the line function in 
OpenCV, including all discrete normal directions ( 𝜃 ∈
[0, 𝜋), ∆𝜃 = 1°) of straight lines and selected perpendicu-
lar distances (∆𝜌 = 1) . Gaussian noises and pepper salt 
noises are added to the images. Each image contains 1 line 
with a line parameter (ground truth). The line type is the 
anti-aliased line. Figure 6 shows 2 sample images in the set.  

 

 

 

Figure 6. Samples of straight-line images 
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3.2.  Detection accuracy 
 

In order to evaluate the accuracy, the root mean square 

error (RMSE) √
1

𝑁
∑ (𝑟𝑒𝑠𝑢𝑙𝑡𝑖  −  𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ𝑖

 )2𝑁
𝑖=1   is 

measured. The standard Hough transform, the work using 

the incrementing property with run-length encoding [12], 

the work proposing compressed line parameter space [14], 

and the proposed methods in this paper are evaluated. The 

evaluation results are shown in Table 1. The lower error in-

dicates the higher accuracy. The results show that the 

proposed methods for high frame rate and ultra-low delay 

processing can also keep accurate detection as standard 

Hough transform. 

 

 Table 1. The evaluation result of root-mean-square error 
 

  
 
3.3.  Hardware performance and resource usage 
 

The whole structure of the straight-line detection core 
works on FPGA Xilinx Kintex-7 XC7K325T at the maxi-
mum frequency of 226.757MHz. It requires 3.061 𝜇s for a 
pixel to travel through the straight-line detection core. The 
processing time for one frame (640◊480) is 1.358ms. 

The resource utilization on the FPGA design is shown in 
Table 2. The maximum frequency that the implementation 
can work on is shown in Table 3. 

 
Table 2. Resource usage of the proposed design 

 
Table 3. The maximum frequency of the designed detec-
tion core after using partially compressed line parameter 

space 
 

 
4.  Conclusion 

 
In this paper, an ultra-low delay straight-line detection 

core based on the Hough transform is implemented. The 
designed detection core can directly detect straight lines 
while capturing high-frame-rate real-time grayscale image 
frames. 

This work targets accurate high-speed line detection that 
can be contributed to visual systems in highly automated 
factories. Two ideas are proposed to reach ultra-low delay 
processing. Firstly, an encoding-free incrementing Hough 
transform is utilized to remove the extra processing delay 
on video. Secondly, a partially compressed line parameter 
space is proposed to reduce the path delay on hardware. 

As a result, the proposed structure works at 1.358ms de-
lay with the resolution of 640◊480.  
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Method error 𝜃 
(rad) 

error 𝜌 
(pixel) 

Standard HT 0.0057 2.13 
Chen et al. VLSI 2011 0.0057 2.35 
Northcote et al. ISCAS 2018 0.0119 2.02 
proposal 1 + original space 0.0057 2.08 
proposal 1 + proposal 2 0.0057 2.09 

 Used Total Percentage 

# of Slice LUTs 5717 203,800 2.81% 
# of Slice registers 6010 407,600 1.47% 
# of occupied slices 1653 50,950 0.03% 
# of Block RAM Tiles 26 445 5.84% 
# of bonded IOBs 62 500 12.40% 
# of BUFGCTRLs 1 32 0.03% 

 proposal 1+ 
original space 

proposal 1 + 
proposal 2 

Maximum frequency 
(MHz) 

209.555 226.757 


