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Abstract

Measuring per-pixel surface roughness is useful for
machine vision applications such as visual inspection.
The surface roughness can be recovered from specular
reflection components, but a large number of images
taken under different lighting and/or viewing directions
is required in general so that sufficient specular reflec-
tion components are observed at each pixel. In this
paper, we propose a robust and efficient method for per-
pixel estimation of surface roughness. Specifically, we
propose an illumination planning based on noise prop-
agation analysis; it achieves the surface roughness esti-
mation from a small number of images taken under the
optimal set of light sources. Through the experiments
using both synthetic and real images, we experimentally
show the effectiveness of our proposed method and our
setup with a programmable illumination and a polar-
ization camera.

1 Introduction

The appearance of an object surface is described by
the reflectance properties, i.e. BRDFs for opaque sur-
faces and BSSRDFs for translucent surfaces. The re-
flectance properties depends on surface materials such
as metals, plastics, and silicons and their surface states
such as rust, cracks, and scratches. Therefore, esti-
mating the reflectance properties of object surfaces is
useful not only for photorealistic image synthesis but
also for visual inspection of object surfaces such as
metallic surfaces [18, 11, 10, 9, 14] and printed circuit
boards [12, 7]. In this study, we propose an image-
based method for measuring the reflectance properties
of object surfaces, in particular per-pixel surface rough-
ness in a non-contact and non-destructive manner.

In general, specular reflection reflects the light in-
coming from a light source to a narrow range of di-
rections, while diffuse reflection uniformly reflects the
light, e.g. the radiance of a Lambertian surface is in-
dependent of viewpoints. For a smooth surface, spec-
ular reflection reflects the light to the mirror-reflection
direction, i.e. the outgoing angle is the same as the
incoming angle, and then we observe sharp specular
highlights. As the roughness of an object surface in-
creases, the specular reflection reflects the light to a
broader range of directions, and then we observe more
blurred specular highlights. Therefore, we can estimate

the surface roughness on the basis of specular reflection
observed on an object surface.

In order to measure per-pixel surface roughness, we
need to observe specular reflection components at each
pixel under different lighting and/or viewing directions
in general so that they are sufficiently observed at each
pixel. Therefore, a large number of images is required
for measuring per-pixel surface roughness; the number
of required images increases as the surface roughness
decreases, because the specular highlights are sharper
for smoother surfaces. In addition, acquiring a large
number of images with different light source and/or
camera positions by mechanically moving a light source
and/or a camera is time consuming.

Accordingly, in this paper, we propose a robust and
efficient method for measuring per-pixel surface rough-
ness. The key idea of our proposed method is illumina-
tion planning on the basis of noise propagation analy-
sis. Specifically, our method estimates per-pixel surface
roughness of the Torrance-Sparrow model [13] from the
images taken under the optimal set of light sources by
taking noises in pixel values into consideration. It is
contrast to the existing technique [3] for robust and
efficient photometric stereo; the estimation of surface
normal assuming the Lambert model [16]. In addition,
our setup makes use of an LCD as a programmable po-
larized illumination and a polarization camera for dis-
tinguishing a specular reflection component from dif-
fuse and subsurface scattering components.

The main contribution of this paper is twofold. First
of all, we propose an illumination planning for esti-
mating per-pixel surface roughness. Specifically, we
study the noise propagation in surface roughness es-
timation, and derive how to select the optimal light
sources for robustly and efficiently estimating surface
roughness from a small number of images. Second, we
confirmed the effectiveness of our method through the
experiments using our prototype setup. Our setup effi-
ciently controls light source positions with an LCD and
robustly extracts specular reflection components using
a polarization camera.

2 Related Work

Our proposed method is related to the recovery of
spatially-varying reflectance functions. Since the re-
covery of spatially-varying reflectance is often under-
constrained, in particular when specular reflection does
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not observed at a surface point, data-driven approaches
has been studied.

Alldrin et al. [1], Hui and Sankaranarayanan [5], and
Hui et al. [6] propose methods for estimating spatially-
varying reflectance by using both the multiple images
with photometric stereo setup and a collocated cam-
era and light source, and the prior knowledge with re-
spect to spatially-varying BRDFs such as basis BRDFs
and their dictionary. Recently, deep learning based ap-
proach is studied [8, 17, 2, 4]. They achieve the recov-
ery of spatially-varying reflectance even from a single
image.

In contrast to the above methods, our proposed
method is the direct measurement of surface rough-
ness, and therefore need not collect the training data
and achieves per-pixel recovery independent of other
pixels. In addition, our formulation enables us to pre-
dict the accuracy (MSE) of the estimated parameters
(see Section 3.2 for more details).

3 Proposed Method

Our proposed method assumes that the position of a
camera, the positions of light sources, and the normal
of a surface point are known in advance, and then esti-
mates two parameters of the Torrance-Sparrow model,
i.e. surface roughness and specular reflectance per
pixel. In this Section, we show that the estimation of
surface roughness results in weighted least squares and
that the optimal light sources can be selected on the
basis of noise propagation analysis. Then, we describe
the illumination planning for robustly and efficiently
estimating surface roughness.

3.1 Estimation of Surface Roughness

According to the (simplified) Torrance-Sparrow
model [13], the pixel value of specular reflection com-
ponent i observed at a surface point is represented by

i =
k

n⊤v
e−

β2

2ss , (1)

where the specular reflectance k and the surface rough-
ness s are unknowns to be estimated. We assume that
the surface normal n, the viewing direction v, and the
angle β between the surface normal and the half vector
are known.

We assume that the observed pixel value is contam-
inated by additive noise δ as

i =
k

n⊤v
e−

β2

2ss + δ. (2)

We take logarithm of eq.(2), and then obtain

i
(
1 β2/2

)( − ln k
1/s2

)
= −i ln[(n⊤v)i] + δ, (3)

since ln(i− δ) ≃ (ln i− δ/i) when δ ≪ i.
Our proposed method estimates the specular re-

flectance and surface roughness from multiple images
taken under different light sources. We denote the pixel
value, the angle between the surface normal and the
half vector, and the noise under the l-th light source
(l = 1, 2, 3, ..., L) by il, βl, and δl respectively. Then,
the set of linear equations, i.e. the constraints imposed
by the observed pixel values are represented as

WB

(
− ln k
1/s2

)
= −Wa+ δ. (4)

Here, W , B, a, and δ are given by

W =


i1 0

i2
. . .

0 iL

 , B =


1 β2

1/2
1 β2

2/2
...

...
1 β2

L/2

 ,

(5)
a = (ln[(n⊤v)i1], ln[(n

⊤v)i2], · · · , ln[(n⊤v)iL])
⊤, and

δ = (δ1, δ2, · · · , δL)⊤.
Therefore, we set δ = 0 in eq.(4), and estimate the

specular reflectance and surface roughness by solving
the set of linear equations as(

− ln k
1/s2

)
= −(WB)+Wa. (6)

Here, (WB)+ is the pseudo inverse matrix of (WB),
i.e. (WB)+ = [(WB)⊤(WB)]−1(WB)⊤. Intu-
itively, eq.(4) and eq.(5) say that the l-th light source
is not useful when il ≃ 0 or ∃l′, βl ≃ βl′ .

3.2 Selection of Light Sources

Let us denote the estimated and ground truth
parameters of the Torrance-Sparrow model, i.e.
(− ln k, 1/s2)⊤ at a surface point by x and x̄ respec-
tively. We study the variance-covariance matrix Σ of
the parameters defined by

Σ = E[(x− x̄)(x− x̄)⊤], (7)

where E[ ] stands for the expectation values.
Substituting eq.(4) into eq.(7), we can derive

Σ = E[(WB)+δ{(WB)+δ}⊤]
= E[(WB)+δδ⊤{(WB)+}⊤]
= σ2(WB)+{(WB)+}⊤

= σ2(B⊤W 2B)−⊤, (8)

where we assume independent and identically dis-
tributed noises whose mean and variance are 0 and
σ2 respectively. Since the mean square error (MSE)
is proportional to the trace of the variance-covariance
matrix, we obtain the MSE of the parameters as

MSE ∝ Tr[(B⊤W 2B)−⊤]. (9)
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Figure 1. Experimental environment: (a) our
setup and (b) its geometry.

Our proposed method iteratively selects the optimal
light source for reducing the MSE (see Section 3.3 for
more details). Since we have P pixels in total, our
method selects the light source so that

P∑
p=1

Tr[(B⊤
p W 2

pBp)
−⊤] (10)

is minimized. Here, Bp and Wp stand for the matrices
in eq.(5) at the p-th pixel (p = 1, 2, 3, ..., P ).

3.3 Illumination Planning

We can see that the optimal set of light sources de-
pend not only on the known geometry but also on the
unknown parameters of the Torrance-Sparrow model
through the matrix Wp in eq.(10). Accordingly, we
propose two approaches: online and offline illumina-
tion plannings.

The online illumination planning iteratively adds
light sources for reducing the MSE of the estimated
parameters, where the parameters for computing the
pixel values in eq.(10) are updated every time the light
source is added. Specifically, when we select the (l+1)-
th light source, we compute the pixel values under the
(l+1)-th light source by using the specular reflectance
and surface roughness estimated from the l images.

The offline illumination planning assumes that some
estimates of the parameters are known and then com-
putes the optimal set of light sources in advance. As
the surface roughness decreases, the specular highlights
become sharper and the larger number of light sources
distributed more densely is required. Therefore, the op-
timal set of light sources are computed from the lower
limit of the surface roughness of an object of interest.

4 Experiments

4.1 Experimental Environment

To confirm the effectiveness of our proposed method,
we conducted experiments using both synthetic and
real images. In the experiments using real images, we
used the setup consisting of an LCD and a polarization
camera as shown in Figure 1 (a). Specifically, we dis-
played white blocks on the LCD and used them as po-
larized light sources; the total number of light sources

(a)

 0

 0.001

 0.002

 0.003

 5  6  7  8  9  10

R
M

S
E

 o
f 
ro

u
g

h
n

e
s
s

number of light sources

proposed medhod
random selection

(b)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 5  6  7  8  9  10

R
M

S
E

 o
f 
re

fl
e

c
ta

n
c
e

number of light sources

proposed medhod
random selection

(c)

(d)

L=5 L=8L=6 L=7

Figure 2. Experimental results using synthetic
images: uniform surface.

is 210. The images of an object of interest were cap-
tured by using the polarization camera BFS-U3-51S5P-
C from FLIR and the specular reflection components
were extracted from those images [15]. We assumed
planar objects as is often the case with CV-based vi-
sual inspection [18, 11, 12, 7, 10, 9, 14]. The geome-
try among the light sources, the points on the object
surface, and the camera was calibrated by using MAT-
LAB camera calibration toolbox in advance (see Fig-
ure 1 (b)). In the experiments using synthetic images,
we rendered the images with the same geometry, and
added zero-mean Gaussian noises to them whose stan-
dard deviation is 0.01 for the pixel values scaled from
0 to 1.

We compared our proposed online illumination plan-
ning with the random selection of light sources. Specif-
ically, both the methods empirically select initial light
sources from 210 light sources so that we can observe
specular reflection components under at least two light
sources at each pixel, because we have two unknowns
to be estimated. Then, our method iteratively adds
the image taken under the optimal light source that
minimizes the sum of traces in eq.(10) and updates the
surface roughness and specular reflectance. We find
the optimal light source from the 210 candidates in a
brute force manner. The random selection iteratively
adds the image taken under a randomly selected light
source and computes the surface roughness and spec-
ular reflectance. The number of trials for the random
selection was 50.

4.2 Results Using Synthetic Images

First, we tested a surface with uniform reflectance
properties; s = 0.05 and k = 0.3. Figure 2 shows (a)
the RMSEs of the estimated surface roughness and (b)
the RMSEs of the estimated specular reflectance vs.
the number of light sources. The solid and dotted lines
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Figure 3. Experimental results using synthetic
images: nonuniform surface.

stand for the RMSEs of our method and the random se-
lection respectively. The error bars stand for the range
of ±1 sigma. We can see that the RMSEs of both our
method and the random selection decrease as the num-
ber of light sources increases. In particular, we can see
that the RMSE of our method is smaller than that of
the random selection. In other words, our illumination
planning achieves the same accuracy with a smaller
number of light sources than the random selection.

Figure 2 visualizes (c) the error map of the surface
roughness estimated by using our proposed method and
(d) the trace map in eq.(10), when the number of light
sources increases from 5 to 8. Here, the larger is the
brighter. We can see that the traces are correlated with
the errors of the estimated surface roughness, and the
light sources are added so that they reduce the traces.
This shows the effectiveness of selecting light sources
on the basis of the sum of traces.

Second, we tested a surface with non-uniform re-
flectance properties; the distribution of surface rough-
ness is shown in Figure 3 (a). Figure 3 (b) shows the
RMSEs of the estimated surface roughness vs. the
number of light sources. Similar to the above result for
the uniform surface, we can see that the RMSE of our
method is smaller than that of the random selection.
We obtained the similar results to the above as to the
error map of the estimated surface roughness and the
trace map as shown in Figure 3 (c)(d). Those results
support the effectiveness of our method for nonuniform
surfaces.

4.3 Results Using Real Images

In the experiments using real images, we tested a
ground glass with almost uniform reflectance proper-
ties. We considered the surface roughness estimated
from all of the 210 images as the ground truth. Figure 4
(a) shows the distribution of the surface roughness.
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Figure 4. Experimental results using real images:
ground glass.

Figure 4 (b) shows the RMSEs of the estimated surface
roughness vs. the number of light sources. The solid
and dotted lines stand for the RMSEs of our method
and the random selection respectively. We can see that
the RMSE of our method is smaller than that of the
random selection.

Figure 4 visualizes (c) the error map of the surface
roughness estimated by using our proposed method,
and (d) the trace map in eq.(10), when the number of
light sources increases from 6 to 9. We can see that the
traces are correlated with the errors of the estimated
surface roughness, and the light sources are added so
that they reduce the traces. Those results show the
effectiveness of our proposed method for real images.

5 Conclusion and Future Work

In this paper, we proposed a method for estimat-
ing per-pixel surface roughness on the basis of spec-
ular reflection components. Specifically, we studied
the noise propagation in surface roughness estimation,
and derived how to select the optimal light sources for
robustly and efficiently estimating surface roughness
from a small number of images. We confirmed the ef-
fectiveness of our method through the experiments us-
ing our prototype setup consisting of a programmable
polarized illumination and a polarization camera.

Currently, our method assumes planar surfaces as is
often the case with CV-based visual inspection. The
extension to curved surfaces is one of the future direc-
tion of our method.
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