
AVM Image Quality Enhancement by Synthetic Image Learning
for Supervised Deblurring

Kazutoshi Akita Masayoshi Hayama Haruya Kyutoku Norimichi Ukita
Toyota Technological Institute, Japan

{sd21501, sd17055, kyutoku, ukita}@toyota-ti.ac.jp

Abstract

An Around View Monitoring (AVM) system is
widely used to allow a driver to watch the situation
around a car. The AVM image is generated by image
distortion correction and viewpoint transformation for
images captured by wide view-angle cameras installed
on the car. However, the AVM image is blurred due to
these transformations. This blur impairs the visibility
of the driver. While many deblurring methods based
on CNN have been proposed, these general-purpose de-
blurring methods are not designed for the AVM im-
age. (1) Since the blur level in the AVM image is
region-dependent, deblurring for the AVM should also
be region-dependent. (2) Furthermore, while supervised
deblurring methods require a pair of input-blurred and
output-deblurred images, it is not easy to collect the
deblurred AVM image. This paper proposes a method
for generating the pairs of training images that cope
with the aforementioned two problems. These training
images are generated by the inverse transformation of
the AVM image generation process. Experimental re-
sults show that our method can suppress blur on AVM
images. We also confirmed that even a very shallow
CNN with the inference time of 2.1ms has the same
performance as the SoTA model.

1 Introduction

Various advanced driver assistance systems (e.g.:
automatic braking, lane deviation alarm) have been
developed and put into practical use. These systems
reduce the number of traffic accidents. On the other
hand, the number of accidents in parking lots is un-
changed [1]. Most of the accidents in parking lots are
caused by a failure to check the safety of the surround-
ing. This is because many distraction factors (e.g.:
steering, searching a parking spot) disturb drivers.

An Around View Monitoring (AVM) system, which
is one of the advanced driver assistance systems, pro-
vides a solution for the problem in understanding the
dynamic situation around the car. The AVM image is
generated by the distortion correction and the view-
point transformation of wide-angle camera images, as
shown in Fig. 1. This system allows us to watch sur-
roundings at once and compensate for the driver’s blind
spots. This system has the potential to prevent the
accidents mentioned above, and many recent cars are
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Figure 1. Overview of the AVM system. AVM
images are generated from wide-angle camera im-
ages installed on all four sides of a car.

Figure 2. Examples of blurred AVM images. The
large red box in the upper left corner is a zoomed-
in version of the small red box for better visual-
ization.

equipped with this system. Although this is very use-
ful, sometimes the AVM image is severely blurred due
to its generation process, as shown in Fig. 2). These
blurs hurt the driver’s perception for understanding the
surrounding environment.

In recent years, with the development of CNNs,
many high-performance deblurring methods are pro-
posed [2, 3, 4, 5, 6, 7]. These methods might have the
potential to suppress blur in the AVM image. However,
these general-purpose deblurring methods are not de-
signed for the AVM image. First, since the blur level in
the AVM image is region-dependent, deblurring for the
AVM image should also be region-dependent. Second,
since basic CNNs are based on supervised learning,
they require a pair of images with and without blur.
While most of the deblurring methods use uniformly-
and-artificially blurred images for training, it is re-
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vealed that models trained on such images do not have
sufficient performance on real images [6, 7] due to the
gap between artificial and real blur. To perform well
on real-world images, we need real-world blurry and
non-blurry image pairs. In addition, these non-blurry
images must be identical to the AVM image. However,
in order to obtain such AVM images, it is necessary to
prepare a camera fixed on the viewpoint of the AVM
image without any support being visible in the cam-
era image. It is, in reality, impossible to capture these
AVM images.

Instead of the uniform-and-artificial blur generation
process mentioned above, this paper proposes a method
to synthetically reproduce the realistic blur in AVM
images by the inverse transformation of the AVM image
generation process. Experimental results show that the
model trained on the images generated by our method
performs sufficiently on severely blurred AVM images.
We demonstrate that even a very lightweight CNN with
a processing time of 2.1ms performs well for real-time
processing.

2 Related Work

2.1 Deblur

Old deblurring methods are based on unsupervised
learning, for example, using total variation, sparse cod-
ing, and self-similarity. Recently, many CNN-based
methods are proposed and outperform the previous un-
supervised methods. Since general CNN-based models
are trained in a supervised manner, a pair of blurred
and non-blurred images are required. Many previous
methods [2, 3, 4, 5] synthetically give various blurs
(e.g.: Gaussian blur, motion blur) and noise (e.g.:
Gaussian noise, white noise) to high-quality images to
obtain training pairs. However, models trained on data
created in this way sometimes do not perform well on
real images. This is because there are domain gaps
between the blur/noise in the synthetic and real im-
ages. To tackle this problem, Zhang et al. [6] trains a
model from unpaired blurred and non-blurred images
using a discriminator that distinguishes blur or non-
blur. Lehtinen et al. [7] trains the model with the pairs
of differently-noised images in the same scene. How-
ever, these methods are inferior to supervised methods
using images with no domain gap.

2.2 AVM Image Quality Enhancement

The main factor of blur in AVM images is the upscal-
ing operations caused by its generation process. Suzuki
et al. [8] proposed a method to optimize the camera pa-
rameters (e.g.: camera angle, view angle) to minimize
the average upscaling rate of these transforms. Al-
though this method improves the quality of the AVM
image, sometimes it is impossible to install the cam-
era with optimal parameters because of the car’s size

or shape. More essentially, even if this method op-
timizes the camera locations, blur due to the upscal-
ing operation is unavoidable. Choi et al. [9] enhances
the AVM images using super-resolution and sharp-
ness enhancement. In this method, highly-upscaled re-
gions in AVM images are generated with super-resolved
and sharpened wide-angle images. However, in this
method, super-resolution and sharpness enhancement
are achieved by exploring the most appropriate patches
in training images based on self-similarity, which also
receives a bad influence from domain gaps, while super-
resolution and sharpness enhancement can be also im-
proved by CNN (e.g., [10, 11, 12, 13]).

3 Proposed Method

3.1 AVM Image Generation Process

The process of the AVM system is as follows. First,
wide-angle camera images are rectified to perspective-
camera images by distortion correction. The trans-
formation parameters are obtained by calibrating
each camera with a hand-held checkerboard pattern.
Next, viewpoint transformation is applied to these
perspective-camera images to obtain an AVM image.
This viewpoint transformation is expressed by the Ho-
mography calibrated with an on-ground checkerboard
pattern. Once these transformation processes are cali-
brated, we make the pixelwise look-up table for map-
ping each pixel in the wide-angle camera images to the
AVM image for efficient online transformation.

3.2 Inverse AVM Image Generation for Realistic
Blurred AVM Image Synthesis

Not only deblurring but also other image restora-
tion and enhancement methods require the pairs of
input degraded images (denoted by IAB) and output
high-quality images with no blur (denoted by IAN ) for
supervised learning. However, IAN is no available in
reality. To train a deblurring model for the AVM im-
age, our proposed method synthetically generates the
degraded AVM image with blur (denoted by ÎAB) from

the high-quality image with no blur (denoted by ÎAN ).
The overview of our proposed method is shown in

Fig. 3. The blur in the AVM image is caused by the
image transformation process (denoted by “Transform”
in the figure) from the images captured by wide-angle
cameras (denoted by IC) to the AVM image. There-
fore, in order to reproduce the realistic blur in the
degraded AVM image (ÎAB) from the image with no

blur (ÎAN ), we apply the inverse transformation of the
AVM image generation process (described in Sec.3.1)

to ÎAN . While any high-quality image can be used as
ÎAN , images in the DIV2K dataset were used in our ex-
periments. This inversely-transformed image (denoted

by ÎC) is regarded as the wide-angle image. Then ÎC
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Figure 3. Overview of our proposed method.
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Figure 4. The shallow model architecture used in
our experiments. The green rectangle indicates
the convolution layer with activation function. ⊕
indicates pixel-wise add operation.

is provided to the AVM image generation process for
obtaining the synthetic AVM image (ÎAB). With the

pairs of ÎAB and ÎAN , we train our CNN-based deblur-
ring model.

More specifically, the inverse transformation of the
AVM image generation process is conducted based on
the look-up table obtained in Section 3.1. Since we
use nearest-neighbor interpolation for the distortion
correction and the Homography transformation in the
AVM image generation process, the look-up table has
reproducible correspondences between the integer co-
ordinates of the wide-angle camera image and the AVM
image. This look-up table allows us to achieve the in-
verse transformation easily and efficiently.

3.3 Deblurring Network and its Training

While the core contribution of this paper is realistic
blurred AVM image generation described in Sec. 3.2,
any deblurring method is applicable. In our experi-
ments, we used our proposed shallow model (shown in
Fig. 4) and MPRNet [5], which is one of the SoTA
models for supervised deblurring. Since the blur in
the AVM image depends on the image coordinates
(i.e., region-dependent), the deblurring network should

Table 1. Quantitative evaluation. Here, the
GFLOPs is given for an input image of 780 ×
530 pixels. The unit of the model size is MB.

Synthetic Real Model
PSNR PI PI size GFLOPs

Shallow 33.03 2.843 2.999 0.3 124.3
MPRNet 33.16 2.910 3.002 20.1 4754.3

Input 29.62 3.052 4.078 - -

be trained in accordance with this region dependency.
This region dependency is trained by concatenating the
map of the normalized coordinates to the input image.
This image concatenated with the coordinate map is
fed into the network.

For training the models, the following two losses are
employed: the reconstruction loss lrecon and the per-
ceptual loss lV GG.

The reconstruction loss is given by the following
equation:

lrecon =
1

WH

W∑
x=1

H∑
y=1

∣∣IGT
x,y − IPred

x,y

∣∣ , (1)

where IGT and IPred denote the ground-truth and pre-
dicted images, respectively. W and H denote the di-
mensions of the image.

The perceptual loss is given by the following equa-
tion:

liV GG =
1

WiHi

Wi∑
x=1

Hi∑
y=1

∣∣ϕi(I
GT )x,y − ϕi(I

Pred)x,y
∣∣ ,
(2)

where ϕi denotes the feature map obtained by the i-
th maxpooling layer within the pretrained VGG19 net-
work. Wi and Hi are the dimensions of the i-th feature
map. In our experiments, i = 5.

The total loss used to train the models is given by
the following equation:

ltotal = lrecon + αl5V GG, (3)

where α is a weight factor of perceptual loss. In our
experiment, we use α = 0.1.

For training, we used RAdam [14] optimizer with
β=(0.9, 0.999) and the mini-batch size was 32. The
learning rate was initialized to 1e-4 and multiplied by
1/10 at 600,000 iterations while total iterations are
750,000. During training, blurred and non-blurred
images were randomly cropped into 128 × 128 pixels
from 780× 530 image due to memory constraints. We
trained the deblurring models with images given by
DIV2K [15]. We split 900 images of DIV2K into 800
training images and 100 evaluation images. In our shal-
low model, we used parametric ReLU [16] after each
convolution layer. Any normalization (e.g., batch nor-
malization, instance normalization) was not used.



Figure 5. Synthetic and real images are shown in the top and bottom, respectively. The left, center, and right
columns in each example are the input, the output of our shallow CNN, and the output of the MPRNet,
respectively. Each large red box is a zoomed-in version of each small red box for better visualization.

4 Experiments

We conducted evaluation experiments with two
kinds of AVM images. The first one was generated
completely as the same way as the blurred AVM im-
age generation process described in Sec. 3.1. Since the
training and test images were generated in the same
way, deblurring this image is easy. However, there can
be a domain gap between the above AVM image and
that generated from real wide-angle images. The sec-
ond one is this AVM image generated from real wide-
angle images. In what follows, the first and second
AVM images are called the synthetic and real images,
respectively. While 800 images in the DIV2K dataset
were used for training the deblurring models, other 100
images in the dataset were used for the above synthetic
test images. The real images are 111 AVM images gen-
erated by real images captured by a commercial AVM
system (SABROC SYSTEM) on roads.

The examples of deblurred AVM images are shown
in Fig.5. CNN trained by our method can successfully
suppress the severe blur in the AVM images. Further-
more, the visibility of test results for the shallow CNNs
is comparable to MPRNet. For quantitative evalua-
tion, we use PSNR and the perceptual index (PI) [17],
which are the standard metric of the image reconstruc-
tion accuracy and the perceptual quality, respectively.
PI combines the no-reference image quality measures
of Ma et al. [18] and NIQE [19] as follows:

PI =
1

2
((10−Ma) +NIQE) (4)

A lower PI indicates better perceptual quality, i.e., less
blur and noise. The results of the quantitative evalua-
tion are shown in Table 1.

From Fig. 5 and Table 1, we can see that the shal-
low model and MPRNet suppress blur and noise from
the input image very well in both synthetic and real
images. Furthermore, the performance of the shallow
model is comparable to MPRNet, even though the shal-
low model has a significantly smaller model size and
GFLOPs. This should be because our proposed blurred
AVM image generation can successfully imitate the im-
age blurring process for generating real AVM images
(i.e., less domain gap between the synthetic and real
AVM images), and therefore the deblurring process for
the real AVM image is easy. In such a simple deblur-
ring problem, even a very shallow model has sufficient
performance. Our shallow model takes only 2.1ms per
frame to enhance AVM image with 780× 530 pixels on
the NVIDIA GeForce GTX 1080Ti GPU.

5 Concluding Remarks

This paper proposed a realistic AVM image genera-
tion method for supervised deblurring to improve the
AVM image quality. Since blurred pixels are generated
by image enlargement, future work includes joint learn-
ing of deblurring and super-resolution (e.g., perceptual
quality [17, 20] and video [21, 22, 23, 24]) for more high-
fidelity AVM image generation. This work was sup-
ported by JSPS KAKENHI Grant Number 19K12129.
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