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Abstract

Crowd counting is an important aspect to safety
monitoring at mass events and can be used to initi-
ate safety measures in time. State-of-the-art encoder-
decoder architectures are able to estimate the number
of people in a scene precisely. However, since most
of the proposed methods are based to solely operate on
single-image features, we observe that estimated counts
for aerial video sequences are inherently noisy, which
in turn reduces the significance of the overall estimates.
In this paper, we propose a simple temporal extension
to said encoder-decoder architectures that incorporates
local context from multiple frames into the estimation
process. By applying the temporal extension a state-of-
the-art architectures and exploring multiple configura-
tion settings, we find that the resulting estimates are
more precise and smoother over time.

1 Introduction

With the rapid spread of COVID-19 early in 2020,
the year became another memorable moment in time
that led to drastic changes in public life showing the
importance of global solidarity. Alongside strong re-
strictions in local public transport, shops and public
places like parks or malls, almost all recurring public
events including fairs were cancelled. Especially public
events that allure thousands and thousands of people
will have to deal with upcoming consequences of such
a situation. Social distancing is just one phrase that
gained popularity within recent time. However, having
an overview over visitors of such huge events did not
just come up during the COVID-19 pandemic. Espe-
cially from a public safety view, organizers want to have
an overview of how crowds of people distribute over a
certain area and how they move in particular since clas-
sical public events are growing in count and size. For
such events, this is not just interesting from a moni-
toring point of view but also for evacuation simulation
at a preliminary stage. Especially for major events it

∗Both authors contributed equally to this work.

is common to hire companies that perform appropriate
simulations in order to analyze their safety and evacu-
ation concepts. Since simulations like these are based
on real data, collecting sufficient and proper data is
inevitable. Although, hiring staff to use tally counter
in order to determine the number of people entering or
leaving the event area, is a time and resource consum-
ing way prone to errors due to the limited amount of
attention of single persons. This brings up the notion
of an automatic evaluation, which comes with further
benefits mainly driven through the inexhaustibility of
machines and even more due to their ability to easily
work on an holistic level. While in particular static
public events with reserved areas have access to pre-
installed video cameras, smaller and emerging events
typically do not have those devices at their disposal.
Drones however are becoming more and more inex-
pensive and flexible and therefore are an appropriate
way to collect data that can easily be used for simula-
tion processes.

In this work we will first give an overview over
related work, including classical ground-based crowd
counting work as well as those done from aerial imagery
collected from drones, helicopters or even with wide-
area motion imagery sensors. This is supplemented by
a short summary of existing datasets suitable for de-
velopment and evaluation of such algorithms. In the
subsequent sections we will present our proposed ap-
proach to tackle the problem of crowd analysis from
aerial-collected video footage, followed by a thorough
evaluation on suitable datasets.

2 Related Work

Crowd counting in single images has been the main
focus of research so far, where mainly the case of
perspective imagery has been covered [1, 2]. CNN-
based approaches based on encoder-decoder architec-
tures that regress on a density map form the state-of-
the-art here. Since crowd counting is closely related
to the field of semantic segmentation, techniques from
the latter were adopted and have been applied success-
fully, i.e. the use of dilated convolutions [3] and skip
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connections to forward different intermediate feature
representations from the encoder into the decoder [4].
The latter was also proposed for the case of aerial im-
agery from bird’s-eye view [5], in which individuals are
depicted by only a few pixels.

Crowd counting in video sequences has thus far not
been studied as extensively as the single-image case.
In [6], a crowd counting architecture is constructed
from a convolutional LSTM (ConvLSTM), followed by
a single 1 × 1 convolutional layer. A VGG-16 feature
extractor [7] is used in [8] to add intermediate feature
maps from the current and one previous frame, both
of which are apart by a fixed distance. The estimated
density map for the current frame is then produced in
decoder fashion. Lastly, the approach in [9] captures
temporal dependencies at density map level within a
centered window around the current frame. Weights
for each density map within the window are derived,
which are then used to combine them convexly to ob-
tain the final density map for the current frame.

3 Temporal Extension

3.1 ConvLSTM

ConvLSTMs were proposed in [10] to exploit spatio-
temporal dependencies in grid structured input data.
We adapt them to operate fully convolutional by omit-
ting terms in which additional fixed-size matrices are
multiplied element-wise with the previous cell state.
Filter kernels are assumed to be square and of same
size. Furthermore, we adopt the approach of [11] to
use ReLU for the non-linear activation function φ, in
order to intersperse the ConvLSTM in between convo-
lutional layers of a crowd counter.

3.2 Architecture

Extending single-frame architectures to incorporate
temporal input dependencies is a common practice in
the related field of semantic segmentation [12, 13],
hence we apply it similarly to crowd counting. To be
more specific, a ConvLSTM is included in between en-
coder and decoder. The former extracts a variety of
local features from the current input frame F t, which
are subsequently decoded by the latter into an esti-
mated density map D̂t. In the following, the output
of the encoder Et := Encoder(F t) is referred to as the
embedding of the current frame.

3.2.1 Learning Task

The temporal context consists of k embeddings com-
prising Et−k+1 up to and including Et. The esti-

mated density map D̂t for the current frame is then
obtained using the final hidden state ht of the ConvL-
STM (Eq. 1).
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Figure 1: Visualization of the M2O architecture and
complete pipeline. Both, the current embedding Et

and the predicted Êt get fused to generate Ẽt as input
for the decoder.

Êt := ht = ConvLSTM(Et−k+1, . . . ,Et)

D̂t := Decoder(Êt) (1)

As such, the many-to-one (M2O) learning task is
considered. Note that the processing time of a single
density map increases here roughly by k. Since the
problem of crowd counting in video sequences deals
with input-output sequences of equal length, we can
also configure the ConvLSTM such that each of its k
resulting hidden states are being decoded, hence tack-
ling the many-to-many (M2M) learning task.

3.2.2 Merging Embeddings

With the ConvLSTM acting as an intermediate
layer, it is responsible for two tasks. It extracts local
temporal dependencies from the input and then merges
them with the embedding into a suited semantic rep-
resentation for decoding. Motivated by the fact that
single-frame architectures already achieve good results
on their own, only the former task is to be tackled by
the ConvLSTM. We therefore propose to merge hidden
states and embeddings by means of a convex combina-
tion with weight λ ∈ [0, 1], prior to decoding (Eq. 2).

D̂t := Decoder(λ ·Et + (1− λ) · Êt) (2)

The weight λ can either be fixed or set to be a learn-
able parameter. Here it is necessary to use ReLU for
φ, as otherwise the semantic representations of Et and
Êt would differ.

4 Experiments

4.1 Setup

All models were implemented in PyTorch (v1.4) and
trained using a single Nvidia GeForce RTX 2080 Ti
GPU with 11 GB of memory. We used Adam [14] for
optimization at default settings to minimize the mean
squared error. All models are trained until convergence
of the training loss and the weights performing best on
the validation set are used. Note that images were
inferred as a whole.



4.1.1 Drone Crowd Dataset

Crowd counting in aerial imagery has only gained
attention recently. To the best of our knowledge, the
Drone Crowd dataset (DCD) [8] is the only available
dataset comprising aerial video sequences. It consists
of 82 sequences of 30 frames, which were recorded at
1,920 × 1,080 pixels and at an estimated frame rate of
1 FPS. The counts range from 25 to 421 persons. In
order to generate ground truth density maps, we follow
the approach of [5] to generate fixed size kernels using
the ground sampling distance of an image. The latter
is not given, therefore we measured the head size of a
person in pixels and assumed an average head diameter
of roughly 0.17 meters [15].

Since the official test set does not provide annota-
tions, we created1 one randomly from 16 sequences.
For training, we randomly crop 20 sequences of size
256 × 256 pixels from each sequence. Furthermore,
we augment these subsequences randomly with scaling
between 0.5 and 2, rotation by multiples of 90° and
flipping in both directions. Besides that, we also ap-
plied photometric distortions [16]. Training sequences
of fixed size are obtained from these subsequences in
a sliding window manner such that each frame is the
final frame once within a training sequence.

4.1.2 Metrics

The crowd counting performance of a model is com-
monly measured by the absolute deviation of estimated
counts Ĉ0, . . . , Ĉn−1, with Ĉi :=

∑
x

∑
y D̂i(x, y). This

is considered by both mean absolute error (MAE) and
root mean squared error (RMSE), respectively [17].

Furthermore, for sequences of consecutive counts
Ĉi,0, . . . , Ĉi,m−1, we introduce a third metric to mea-
sure the deviation in roughness for all l videos, which
we refer to as mean absolute roughness error (MARE)
(Eq. 4). The roughness ρi (Eq. 3) for the i-th sequence
is given by the standard deviation of successive count
differences ∆i,j := Ci,j+1 −Ci,j . It measures the aver-
age deviation from the overall trend of the progression.

ρ2i :=
1

m− 1

m−2∑
j=0

(
∆i,j −∆i

)2
(3)

MARE :=
1

l

l−1∑
i=0

|ρ̂i − ρi| (4)

4.2 Baseline

Although there are many state-of-the-art encoder-
decoder architectures to cope with perspective imagery,

1Validation: 28-30, 36-38, 51-53, 83, 85, 92, 93, 102; Test :
13, 14, 19-21, 39-41, 54, 71-73, 78, 79, 91, 110

Table 1: Evaluation of single-frame baseline architec-
tures. Batch sizes and learning rates were set to (40,
5 · 10−6) (CSRNet), (20, 10−5) (MRCNet) and (40,
10−5) (SFANet). We set the loss parameter λ = 0.1
during training of the MRCNet.

Method MAE RMSE MARE

CSRNet 35.5 43.4 3.16
MRCNet 46.7 58.3 3.19
SFANet 39.7 48.3 2.74

not as many have been proposed for the case of aerial
imagery. Fortunately, it appears as if the former can
also be applied here successfully, judging by the Vis-
Drone2020 Crowd Counting Challenge [18]. Therefore
we set CSRNet [3] and SFANet [4] as our baselines,
as they performed well therein. We also include MR-
CNet [5], since it was proposed for crowd counting
in aerial imagery. Note that for reasons of compar-
ison, SFANet is employed without the attention-map
decoder.

We observe from Tab. 1 that CSRNet performs the
best in terms of crowd counting, whereas the deviation
in roughness of estimated count progressions is low-
est for SFANet. Fluctuations in estimated counts over
time are particularly observed for moving individuals,
which causes their depicted shapes to vary from frame
to frame.

4.3 Temporal Extension

The temporal extension is included after the final
512 channel convolutional layer. Since the decoder
of CSRNet is constructed from dilated convolutions
with dilation rate of 2, we also adopt them in the
ConvLSTM with 3 × 3 filters. We evaluate our ap-
proach for contexts of three and five embeddings, i.e.
k ∈ {3, 5}. Larger contexts were not considered due
to limited training time and the low frame rate of se-
quences in DCD.

4.3.1 Learning Task

At first, the temporal extension is evaluated for both
learning tasks and context sizes. As shown in Tab. 2,

Table 2: Evaluation results of the temporal extension
(TE) with both learning tasks.

Method MAE RMSE MARE

k = 3
TE-M2O 31.5 39.8 2.61
TE-M2M 34.4 42.5 2.87

k = 5
TE-M2O 42.2 53.3 2.03
TE-M2M 38.9 49.4 3.93



Table 3: Evaluation results of the temporal extension
with embedding merging (MTE). Weight λ was either
fixed to 0.5 or set to be a learnable parameter.

Method MAE RMSE MARE

k = 3
MTE (fixed) 41.1 51.5 2.08
MTE (learned) 41.6 52.7 2.24

k = 5
MTE (fixed) 31.9 38.7 2.17
MTE (learned) 33.6 43.6 2.19

the largest improvement in terms of crowd counting
performance is achieved when using three embeddings
and the M2O task, where the MAE is about 11% lower.
The performance degrades with five embeddings, al-
though it yields the smoothest progression.

4.3.2 Merging Embeddings

Although it cannot be said which of the tasks is
superior, we evaluate the approach of merging em-
beddings using the M2O task. With different context
sizes, it performed best in terms of crowd counting per-
formance and smoothness of estimated count progres-
sions.

The results of the embedding-merging approach are
reported in Tab. 3. At first, we fixed λ at 0.5 and
achieved the best crowd counting performance when
using five embeddings. Although the MAE increased
by about 1.3% compared to the previous approach,
the resulting RSME could be lowered by 2.8%. This
shows a larger impact of this change on strongly de-
viating count estimates. The by 0.44 reduced MARE
shows smoother count progressions on these estimates.
The setup yielding smoothest estimates was using three
embeddings, but decreased the crowd counting perfor-
mance on the counterside.

Setting λ to be learnable, we expected the perfor-
mance in both categories to at least not degrade, since
the network should be able to find a suited weight.
However, the results of Tab. 3 report otherwise, as
performance degrades in both categories and for both
context sizes. The final learned values for λ were 0.47
(k = 3) and 0.33 (k = 5), where the network tends to
favor embeddings Et. However, the shape of progres-
sions of λ during training were the same, irrespective
of the context size and initial value. It appears as if
the addition of the extra parameter does not introduce
extra dynamic into the optimization problem.

We also applied the top two performing configura-
tions of the temporal extension on the remaining crowd
counters besides CSRNet. Similarly, a batch size of 10
was used and the learning rate of the respective crowd
counter was adjusted adequately. The results are re-
ported in Tab. 4. With MTE (fixed), we observed im-
proved crowd counting performance and smoother es-
timated progressions for both crowd counters. There-

Table 4: Evaluation results of MRCNet and SFANet
with configurations TE-M2O (k = 3) and MTE (k = 5)
utilizing three and five embeddings, respectively.

Method Arch. MAE RMSE MARE

TE-M2O
MRCNet 46.7 59.8 2.05
SFANet 46.0 55.5 2.35

MTE (fixed)
MRCNet 44.3 56.9 1.58
SFANet 33.2 41.8 1.82
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Figure 2: Exemplary estimated count progressions for
two sequences of the test set. The temporal extension
was used with CSRNet. Both sequences are equally
challenging for all methods. S73 shows a dark scene
with little contrast, S110 on the other hand shows a
road junction with lots of structure.

fore, it seems as if this architecture is the better ap-
proach to crowd counting in video sequences. In con-
trast, only a decrease in MARE is the case when us-
ing TE-M2O, while an improvement in terms of crowd
counting performance cannot be observed.

Finally, Fig. 2 depicts plots of estimated count
progressions for models TE-M2O and MTE (fixed)
(both using CSRNet) utilizing three and five embed-
dings, respectively. Estimates up until the second and
fourth frame, respectively, are somewhat noisy, which
is caused from padding the beginning of some subse-
quences with empty frames.

5 Conclusion

In this paper, we proposed to include a ConvL-
STM between encoder and decoder to enhance single-
frame crowd counting architectures for tackling video
sequences. We found that by also utilizing multiple
previous embeddings, counts can be estimated more ac-
curately, which are also smoother over time. By treat-
ing the feature extraction from the current frame and
the capturing of temporal dependencies as two separate
tasks, we furthermore observed that estimated count
progressions were even smoother while the counts re-



main accurate. It remains to examine the effectiveness
of different configurations of the input window that
is fed into the ConvLSTM, such as a centered one as
in [9], or also utilizing future frames in a bidirectional
manner as in [6].
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