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Abstract

Deep learning model compression is necessary for
real-time inference on edge devices, which have limited
hardware resources. Conventional methods have only
focused on suppressing degradation in terms of accu-
racy. Even if a compressed model has almost equiva-
lent accuracy to its reference model, the inference re-
sults may change when we focus on individual sam-
ples or objects. Such a change is a crucial challenge
for the quality assurance of embedded products because
of unexpected behavior for specific applications on edge
devices. Therefore, we propose a concept called “Loss-
less AI” to guarantee consistency between the inference
results of reference and compressed models. In this pa-
per, we propose a training method to align inference
results between reference and quantized models by ap-
plying knowledge distillation that batch normalization
statistics are frozen at moving average values from the
middle of training. We evaluated the proposed method
on several classification datasets and network architec-
tures. In all cases, our method suppressed the inferred
class mismatch between reference and quantized models
whereas conventional quantization-aware training did
not.

1 Introduction

Deep neural networks are widely used for recogni-
tion in practical applications, such as object detec-
tion, face recognition, speech recognition, and trans-
lation [1]. For applications that require real-time infer-
ence, it is more effective to execute inference processing
on edge devices than cloud systems. Because edge de-
vices typically have limited hardware resources, it is
necessary to reduce the size of high computational cost
models using compression methods, such as pruning
and quantization [2, 3], to enable the implementation
of models on edge devices.

Previous studies on model compression aimed to
suppress accuracy degradation. Even if a compressed
model has equivalent accuracy to its reference model,
individual sample-by-sample inference results may be
different. Figure 1 shows examples of car and person
detection. In conventional methods, both reference and
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Figure 1. Conceptual examples of conventional
compression methods and Lossless AI in car and
person detection. Cars surrounded with yellow
and green dashed circles are degraded and im-
proved by model compression, respectively.

compressed models detect four cars, whereas their in-
ference results for individual cars are not the same. As
a result, the model behavior on an individual sample
changes before and after model compression.

For the quality assurance of embedded products,
the behavior differences caused by model compression
require a large amount of reworking costs and effort.
The model behavior change results in unexpected be-
havior for specific applications, and additional training
and evaluation are required to overcome unexpected
degradation. Even if such a modification overcomes
degraded samples, it is likely to cause degradation on
other samples because it is difficult to reproduce the
same inference results before and after model compres-
sion. Therefore, the model behavior difference can be
a crucial challenge for achieving the required perfor-
mance on edge devices.

We propose a concept for embedded AI called
“Lossless AI” to guarantee consistency between the

17th International Conference on Machine Vision Applications (MVA)
Fully Online, July 25–27, 2021.

© 2021 MVA Organization

P1-9



inference results of reference and compressed models.
Consistency between inference results can be evaluated
using various criteria for each task, such as the match
rate in classification tasks and intersection over union
between inferred bounding boxes in object detection
tasks. Improving performance based on these crite-
ria, Lossless AI can produce compressed models with
inference results closer to those of their reference mod-
els. In this paper, we focus on classification tasks and
quantization as a model compression method, and pro-
pose a knowledge distillation (KD) method that the
batch normalization (BN) moving average statistics are
frozen. Our contributions are as follows:

• We propose a concept of model compression called
“Lossless AI” and a new criterion to guarantee
consistency between inference results before and
after compression.

• We propose a KD method that BN statistics are
frozen at moving average values for inference result
alignment.

• We demonstrate the effectiveness of the proposed
KD method by evaluating several classification
datasets and network architectures.

2 Related works

2.1 Quantization-aware training

Quantization-aware training (QAT) [3] is a method
that quantizes a model during training. QAT models
quantization and backpropagates gradient approxima-
tion with a straight-through estimator [4, 5]. Fold-
ing BN [6] is a technique used to stabilize QAT by
setting BN statistics (i.e. the mean and variance) to
input batch statistics at the beginning of the training
phase and freezing them to moving average values after
sufficient training. This technique improves accuracy
better than post-training quantization, which statically
quantizes weights and activations of pretrained models.

2.2 Knowledge distillation

Knowledge distillation (KD) [7] is another approach
used to improve small model accuracy. KD is a tech-
nique that transfers the knowledge of a large teacher
model to a small student model via a soft target in
the loss function. KD has been applied to quantiza-
tion in some studies to improve the quantized model
accuracy [8, 9, 10].

2.3 Batch normalization

Batch normalization (BN) [11] is a general technique
for improving accuracy in deep networks by normaliz-
ing an input tensor xi ∈ RN,H,W (N , H, and W de-
note the batch size, height, and width, respectively)
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Figure 2. Examples of mismatched patterns
with different inference results between reference
(Ref.) and quantization (Quant.) models: (a)
degradation, (b) improvement, and (c) change be-
tween the incorrect classes. Ground truth (GT)
labels are also shown. The check marks represent
correct inferred classes.

for channel i using statistics (mean µi and variance
σ2
i ). BN is expressed as follows using the βi, γi ∈ R

parameters for affine transfer:

yi = γi
xi − µi√
σ2
i + ε

+ βi, (1)

where ε is a small value used to achieve numerical sta-
bility. BN batch statistics µi,Bt

and σ2
i,Bt

calculated
from the input batch are used for training at the t-th
iteration. In the inference phase, BN moving average
statistics µi,M and σ2

i,M are used. The moving average
values are updated with momentum α using all the
batch statistics during training.

Adaptive BN (AdaBN) [12] uses domain-specific BN
statistics on the basis of the hypothesis that informa-
tion related to labels and domains are stored in weights
and BN statistics, respectively. To improve the infer-
ence accuracy in different domains from training, a sim-
ilar framework was recently applied to several tasks,
such as unsupervised domain adaptation [13], adver-
sarial examples [14], and person re-identification [15].

3 Methodology: knowledge distillation with
frozen BN statistics

In classification tasks, the match rate of classes indi-
cates the degree of inference result alignment between
reference and quantized models. Lossless AI aims to
improve the match rate by reducing the number of mis-
matched samples whose inferred classes differ between
the two models. As shown in Figure 2, mismatched
samples are categorized into three patterns: degrada-
tion, improvement, or change between incorrect classes.
In terms of the match rate, conventional methods such
as QAT and KD are not sufficient because they can
only contribute to accuracy improvement.

Figure 3 shows the proposed knowledge distillation
framework. Based on the assumption of AdaBN, BN
statistics memorizes domain information. For improv-
ing the match rate of classes, we employ fine-tuning
only weight parameters which determine classification



Figure 3. Illustrations of the proposed knowledge distillation framework for alignment between reference and
quantized models: (a) overview and (b) training scheme of batch normalization layers.

output on condition that BN statistics are set to frozen
moving average values in the same manner as infer-
ence mode. Our method of the fine-tuning is carried
out after standard KD to optimize both weight and
BN moving average parameters. As a result, our quan-
tized model achieves comparable accuracy to the ref-
erence model and guarantee consistent model behavior
between the two models.

Phase 1: alignment of inter-domain/class distributions
At the beginning of the training, BN batch statis-
tics are used to calculate the forward pass to
prevent collapse. BN moving average statistics
are updated by all batch statistics in this phase.

Phase 2: alignment of inter-class distributions only
After convergence of Phase 1, BN moving average
statistics are used for the forward pass. It is
notable that BN moving average statistics should
be frozen (α = 0) to enable the alignment of
inter-class distributions only.

We adopt the mean-square error loss (MSELoss) as
the loss function L, and the logits of the two models,
fR and fQ, as inputs to the loss function to enable the
alignment of the inference results including scores.

4 Experiments

In this section, we describe the evaluation of the
proposed method on several network architectures and
datasets. We performed training and evaluation on
five datasets that had different numbers of classes and
images: ImageNet [16], Tiny ImageNet [17], CIFAR-
100 [18], STL-10 [19], and CIFAR-10 [18].

Figure 4. ResNet-50 training procedures of the
(a) top-1 match rate and (b) top-1 accuracy in
the validation of CIFAR-100. The blue, purple,
and orange lines indicate the exp. 1 (QAT), 2
(KD), and 3 (Ours) results, respectively. The
green dashed line indicates the validation accu-
racy of the reference model and the black dotted
line indicates the starting epoch for freezing the
BN statistics in exp. 3 (Ours).

We performed and compared the following three
QATs for 40 epochs after floating point (FP) train-
ing for 200 epochs. We started the QATs whose initial
weights were from reference models extracted from the
epoch with the best accuracy in advance FP training.

exp. 1 QAT: we used the cross-entropy loss between
the inferred class and ground truth label.

exp. 2 QAT+KD (KD): we used the MSELoss be-
tween the logits of reference and quantized models

exp. 3 QAT+KD (Ours): we used the same loss func-



Table 1. Evaluation results for ResNet-50 trained on CIFAR-100 (unit: %).

Best epoch – accuracy Best epoch – match rate
FP (Ref.) QAT KD Ours QAT KD Ours

Epochs 170 23 28 16 11 26 33
Top-1 accuracy 73.54 73.52 73.48 73.61 73.14 73.18 73.48
Top-1 match rate — 95.79 96.65 98.38 96.34 96.74 98.45

Table 2. Evaluation results for ResNet-50 trained on several datasets (unit: %).

Information Best epoch – match rate
Datasets Classes Images FP acc. QAT KD Ours
ImageNet 1000 14M 76.13 92.26 97.04 97.35

Tiny ImageNet 200 110K 59.45 92.26 94.85 97.26
CIFAR-100 100 60K 73.54 96.34 96.74 98.45

STL-10 10 13K 93.12 97.28 97.63 99.19
CIFAR-10 10 60K 93.12 98.96 99.31 99.64

Table 3. Evaluation results for several architec-
tures trained on CIFAR-100 (unit: %).

Architectures FP acc. QAT KD Ours
ResNet-50 73.54 96.34 96.74 98.45
ResNet-20 68.32 95.03 96.34 98.09
MobileNet 64.84 94.46 95.10 97.36

tion as exp. 2, and BN statistics were frozen at
moving average values updated for 10 epochs.

For all experiments, we trained the models in the
Distiller [20] environment, which is Intel’s open-source
package based on a PyTorch implementation. We basi-
cally set the learning conditions and hyperparameters
according to default settings of Distiller environment.
The batch size and learning rate settings were different
between FP training and QAT. We set the batch size
to 128 for FP training and 64 for QAT, except for the
STL-10 dataset. In the STL-10 experiments, we set the
batch size to 64 for FP training and 32 for QAT. In FP
training, we initially set the learning rate to 0.1 and
used a step learning rate scheduler, which multiplied
it by 0.1, 0.1, and 0.2 at 80, 120, and 160 epochs, re-
spectively. In QAT, we initially set the learning rate to
0.0001 for exp. 1 (QAT) and 5× 10−6 for exp. 2 (KD)
and 3 (Ours), and used a step learning rate scheduler,
which multiplied it by 0.1 at 20 and 30 epochs. We
determined these hyperparameters empirically.

4.1 Evaluation and ablation study

Figure 4 shows the training procedures for top-1
match rate and top-1 validation accuracy for ResNet-
50 [21] on the CIFAR-100 dataset. The match rate was
gradually degraded in QAT and was almost constant
in exp. 2 (KD). The proposed method significantly
improved the match rate and maintained it at the im-
proved level after the BN statistics were frozen. In

addition, accuracy of our method was slightly better
than that of the other two methods and comparable to
that of the reference model. We summarize the eval-
uation results in Table 1. Regarding the best epochs
for accuracy, the top-1 accuracy of all training was al-
most the same as that of the reference models, and our
method suppressed the model behavior difference by
61% compared with QAT. Regarding the best epoch
for the match rate, the proposed method suppressed
the model behavior difference by 58% compared with
QAT, whereas the accuracy degradation from the refer-
ence model was suppressed to 0.6%. The model behav-
ior difference was calcurated from the mismatch rate of
the QAT model and the match rate difference between
QAT and the proposed methods.

Tables 2 and 3 shows the evaluation results for
ResNet-50 trained on five datasets and three archi-
tectures (ResNet-20, ResNet-50, and MobileNet [22])
trained on the CIFAR-100 dataset, respectively. For all
experiments, the proposed method achieved the best
match rate in comparison with the best match rate
epochs for each training and suppressed the model be-
havior difference by more than 50% compared with
QAT. In the best case (ResNet-50 trained on STL-10),
the match rate improved from 97.28% to 99.19% using
the proposed method, and that is equivalent to sup-
pressing the model behavior difference by 70.2%.

5 Conclusions

For the quality assurance of embedded products, we
proposed a concept for embedded AI called “Lossless
AI” to guarantee consistency between the inference re-
sults of reference and compressed models. In this pa-
per, we proposed a KD method with BN moving av-
erage statistics frozen to align inter-class distributions
effectively. We demonstrated the effectiveness of the
proposed method by evaluating several network ar-



chitectures and classification datasets. The proposed
method suppressed the behavior difference depending
on the application within an acceptable level (around
50–70%). We will analyze the mismatched samples re-
mained after our method and improve the method by
making counter measures for them. Furthermore, we
will adapt Lossless AI to other tasks and compression
methods such as object detection and pruning.
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