
Attention Mining Branch for Optimizing Attention Map

Takaaki Iwayoshi
Chubu University

Address
iwayoshi@mprg.cs.chubu.ac.jp

Masahiro Mitsuhara
Chubu University

Address2
mitsuhara@mprg.cs.chubu.ac.jp

Masayuki Takada
Chubu University

Address3
mosa@mprg.cs.chubu.ac.jp

Tsubasa Hirakawa
Chubu University

Address4
hirakawa@mprg.cs.chubu.ac.jp

Takayoshi Yamashita
Chubu University

Address5
takayoshi@isc.chubu.ac.jp

Hironobu Fujiyoshi
Chubu University

Address6
fujiyoshi@isc.chubu.ac.jp

Abstract

Attention branch networks (ABNs) can achieve high
accuracy by visualizing the attention area of the net-
work during inference and utilizing it in the recognition
process. However, if the attention area does not high-
light the target object to be recognized, it may cause
recognition failure. While there is a method for fine-
tuning the ABN using attention maps modified by hu-
man knowledge, it takes up a lot of labor and time be-
cause the attention map needs to be modified manually.
In this paper, we propose a method that automatically
optimizes the attention map by introducing an attention
mining branch to the ABN. Our evaluation experiments
show that the proposed method improves the recognition
accuracy and obtains an attention map that appropri-
ately focuses on the target object to be recognized.

1 Introduction

Visual explanation provides the attention area dur-
ing the inference of a convolutional neural network
(CNN) [1] as an attention map to interpret the rea-
son of the network output. A typical visual explana-
tion method is the attention branch network (ABN) [2],
which uses the attention map as an attention mecha-
nism that calculates the element-wise product of the
attention map and the feature map. This attention
mechanism enables the important area for recognition
to be captured and improves the accuracy. However,
the attention map may focus on objects other than
the object to be recognized. Such attention maps can
cause false recognition and have a negative effect on
the network training and accuracy.
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Figure 1. Fine-tuning methods of ABN using at-
tention maps modified by (a) human knowledge
and (b) the proposed method.

To overcome this problem, a fine-tuning method of
ABN by human knowledge has been proposed [3]. In
this method, the attention maps of misclassified sam-
ples are modified for an ideal attention map through
human knowledge, as shown in Fig. 1(a). The pre-
trained ABN is then fine-tuned using the modified at-
tention maps. Although this approach can refine atten-
tion maps and improve the recognition accuracy, man-
ual modification of the attention maps takes a lot of
human effort and time.

In this paper, we propose a fine-tuning method of
ABN while considering the effective regions for recog-
nition. Figure 1(b) shows the overview of our method.
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We introduce an attention mining branch for the fine-
tuning that utilizes the concept of the Guided Atten-
tion Inference Network [4], which is a segmentation
method, to help the attention mining branch learn to
gaze only at the object to be recognized and then au-
tomatically modify the attention map. Experimental
results show that the proposed method can obtain ef-
fective attention maps for recognition while reducing
the human cost by automatically modifying the atten-
tion maps.

2 Related Work

Attention maps enable us to understand the reason
for a network decision. Several methods for obtaining
the attention map have been proposed [5, 6, 2], which
can be categorized into two approaches: bottom-up
and top-down. The bottom-up approach computes the
attention map by using local responses of convolution
[12, 13]. The top-down approach computes attention
maps derived from class information of the network
output [5, 6, 2]. ABN [2], which is one of the major
top-down visual explanation methods, generates an at-
tention map by using global average pooling [7] and
feature maps, and then uses the map for the atten-
tion mechanism to enhance the features of the target
object. This attention mechanism improves the clas-
sification accuracy. Our method utilizes the branch
structure and attention mechanism for optimizing at-
tention maps.

For optimizing attention maps, a fine-tuning method
based on human-in-the-loop has been proposed [3].
This method manually edits the attention maps of mis-
classified images that focus on the target object or char-
acteristic region for classification and then fine-tunes
the network parameters by using the edited attention
map. This enables the network to correctly focus on
the same region as a human would and improves the
explainability and accuracy. However, this method re-
quires the attention maps to be manually edited, which
causes an increase in human labor and time. In con-
trast, our fine-tuning approach can optimize attention
maps without manual editing.

The most similar work to our own is GAIN, a
method proposed by Li et al. [4]. GAIN is a
weakly supervised semantic segmentation method that
first makes a mask image from an attention map ob-
tained by Gradient-weighted Class Activation Mapping
(Grad-CAM) [6] and then generates an image whose
highlighted region is hidden by applying the mask for
the input image. It then updates the network parame-
ters using an additional loss value calculated from the
correct class classification probability for the generated
image. This additional loss makes the network focus
only on the target object. GAIN computes Grad-CAM
attention maps that require backpropagation and then
inputs masked images to the network to update the pa-
rameters. Our fine-tuning method differs in that it can
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Figure 2. Process flow of proposed method. In
step 1, we train the network. In step 2, we fine-
tune the network by using the attention mining
branch and masked feature map.

generate the attention map, infer the masked sample,
and update the parameters during an inference.

3 Proposed Method

In this section, we introduce our proposed attention
mining branch and fine-tuning method while consider-
ing the regions that are effective for recognition.

The proposed method automatically optimizes the
attention map by introducing the attention mining
branch into the ABN. Figure 2 shows the structure of
the proposed method. It first extracts a feature map
from an input image by a feature extractor and then in-
puts the feature map into the attention module to gen-
erate an attention map. The feature map and attention
map are used for the attention mechanism to enhance
the features of the highlighted region and obtain classi-
fication results by the perception branch. Our method
further utilizes the attention mining branch to optimize
the attention map during the fine-tuning step.

3.1 Attention mining branch

The attention mining branch learns to acquire re-
gions that are effective for recognition. Figure 2 shows
the optimization flow of the attention map by the at-
tention mining branch. The structure of the attention
mining branch is the same as that of the perception
branch. Also, the branch shares the weights with the
perception branch and outputs class probabilities by
using a masked feature map. If the class probability



of the target class decreases, we can assume that the
masked region hides the target objects. Therefore, by
learning to minimize the class probability of the target
class, the attention map is optimized to gaze only at
the target object. The attention mining branch shares
weights with the perception branch. This weight share
allows the perception branch to reflect the weights of
the attention mining branch, which has learned to gaze
only at the object to be recognized.

3.1.1 Mask generation method

For generating a masked feature map, we use the
attention maps obtained from the attention module.
Let A be the attention map, and σ be the threshold of
attention. The mask T is defined by

T (A) =
1

1 + exp(−100(A− σ))
. (1)

By using the Sigmoid function, the process is equiv-
alent to binarization while maintaining the gradient.
Then, we multiply the feature map obtained from the
feature extractor and the mask. Let F be the feature
map from the feature extractor. The masked feature
map F ∗ is defined by

F ∗ = F − (T (A)� F ). (2)

Consequently, we can generate a masked feature map
that hides the highlighted area.

3.2 Learning algorithm

Figure 2 shows the process flow of the proposed
method. The training procedure is implemented as fol-
lows.

Step 1 We first initialize the network’s parame-
ters, and train the network.

Step 2-1 We generate the mask from an atten-
tion map obtained by the attention module. Then,
the output of the feature extractor is multiplied by the
generated mask to obtain the masked feature map.

Step 2-2 We input the masked feature map gen-
erated in step 2-1 to the attention mining branch and
obtain class probabilities as an output. Then, we com-
pute a loss of the attention mining branch Lam from
the output probability and the ground truth. Lam is
the sum of the class probabilities of each sample output
from the attention mining branch. This means that the
smaller loss Lam successfully hides the object to be rec-
ognized. Let c ∈ {1, . . . , C} be class and i ∈ {1, . . . , n}
be a sample in a mini-batch. We denote the classifica-
tion probability of correct class c for the i-th masked
feature map as Sc

i . The loss Lam is defined as follows:

Lam =

n∑
i=1

Sc
i . (3)

Table 1. Top-1 and top-5 accuracy on each
dataset [%]

Model
CUB-200-2010 Stanford Dogs

Top-1 Top-5 Top-1 Top-5

ABN [2] 31.68 57.01 71.81 93.02

Proposed 33.53 58.68 71.99 92.80

Human
37.42 62.08 – –

knowledge [3]

Step 2-3 We update the network parameters.
The loss is calculated by three loss values: Lam, Latt,
and Lper. Latt is a cross-entropy loss between the out-
put of the attention module and the correct label. Like-
wise, Lper is a cross-entropy loss between the output
of the perception branch and the correct label. The
entire loss function L is defined as

L = Latt + Lper + αLam, (4)

where α is a scaling parameter for Lam.

4 Experiments

To evaluate the effectiveness of the proposed
method, we performed evaluation experiments on a
fine-grained image recognition task.

4.1 Experimental settings

We used the Caltech-UCSD Birds 200-2010 (CUB-
200-2010) dataset [8] and the Stanford Dogs dataset [9].
ResNet-50 [10] was utilized as the base network. The
number of training updates was 300 epochs each for
the ABN pre-training and the proposed method. The
batch size was set to 16. The coefficient α of Lam was
set to 0.0001. The mask threshold was set to 0.78 for
the CUB-200-2010 dataset and to 0.40 for the Stanford
Dogs dataset. As comparative methods, we adopted
ABN [2] and the conventional fine-tuning method by
human knowledge (human knowledge) [3].

4.2 Experimental results

Table 1 shows a comparison of the top-1 and top-5
accuracies for each dataset. In the results of CUB-200-
2010, the recognition accuracy of the proposed method
was 1.85 points better than that of ABN. In the Stan-
ford Dogs dataset, the proposed method improved the
recognition accuracy of Top-1 compared with ABN. Al-
though the recognition accuracy of Top-1 was lower
than that of the method introducing human knowledge,
our method successfully improved accuracies without
manually modified attention maps.
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Figure 3. Examples of attention maps on CUB-
200-2010.

4.3 Visualization of attention maps

We qualitatively evaluated the obtained attention
maps. Figures 3 and 4 show examples of attention
maps on CUB-200-2010 and Stanford Dogs, respec-
tively.

As shown in Fig. 3, the attention maps of human
knowledge-based fine-tuning could identify class ob-
jects by focusing on more localized regions. Compared
with ABN, the proposed method improved the class
probability by reducing the attention area outside the
recognition target while gaining the effective area for
recognition.

In the case of the Stanford Dogs dataset, as shown
in Fig. 4, the proposed method improved the class
probability by reducing the attention area outside the
recognition target compared to ABN. Moreover, in
the middle column results, the attention map of ABN
highlighted the outside of the dog. In contrast, since
the proposed method successfully refined the attention
maps, the dog region was accurately highlighted.

4.4 Quantitative Evaluation of Attention Map

Next, we quantitatively evaluated the effectiveness
of the attention acquired by the proposed method. As
an evaluation metric, we used insertion [11]. In this
evaluation, we masked images in the lower attention
region and computed the accuracy for the masked im-
ages. We first evaluated the accuracy while changing
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Figure 4. Examples of attention maps on Stanford
Dogs.

the percentage of masked regions and then checked the
average class probability of each sample for each per-
centage of insertions and evaluated them by the area
under curve (AUC). The higher the AUC, the more ef-
fective the attention map is for recognition, as insertion
is evaluated only in the more highlighted region in the
attention map. In this experiment, we used only sam-
ples that ABN misclassified to confirm misclassification
improvements.

Figure 5 shows the results of insertion for each
dataset. In Fig. 5(a), we can see that the AUC of
the proposed method was higher than that of ABN on
the CUB-200-2010 dataset. Similarly, the AUC of the
proposed method was higher than that of ABN on the
Stanford Dogs dataset, as shown in Fig. 5(b). These
results demonstrate that the proposed method can op-
timize the attention map.

5 Conclusion

In this paper, we proposed a method to optimize
an attention map by introducing an attention mining
branch into the ABN structure. The attention mining
branch classifies samples using masked feature maps
by generated attention maps during the training, which
appropriately refines the attention maps to focus on the
target object. Our experiments showed that the pro-
posed method improved both the attention area and
the recognition accuracy. Further, evaluation with in-
sertion metrics demonstrated that the attention map
obtained by the proposed method could capture the
effective region for recognition. Our future work will
include a more extensive evaluation of the proposed
method on additional datasets.
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