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Abstract

Automatic progression staging of liver fibrosis plays
very important roles in the direct treatment and the
evaluation of prognosis. In clinical site, liver biopsy
is popularly used as the gold standard method of liver
fibrosis staging, and has obvious drawbacks such as
sampling error, heavy burden to patients and high
inter-observer variability. Recently, non-invasive tech-
niques as a diagnostic standard have attracted ex-
tensive attention. This study exploits a novel deep
learning-based liver fibrosis staging framework using
non-invasive MRI images. Since there exist large vari-
ance in both texture and shape of MRI liver images
between patients and subtle distinctness among the pro-
gression stages of liver fibrosis, it is a challenge task for
accurate progression staging of liver fibrosis.To enhance
the discriminative power among the fibrosis stages with
subtle difference, this study proposes to integrate angu-
lar margin penalty into the conventional softmax loss of
the deep learning network, which is expected to enforce
extra intra-class compactness and inter-class discrep-
ancy simultaneously. Specifically, we explore the an-
gular margin constrained loss in several classification
neural network models such as VGG16, ResNet18, and
ResNet50, and further incorporate the between-stage
similarity of the training procedure to adaptively ad-
just the margin for boosting liver fibrosis classification
performance. Experiments on the MRI image dataset
provided by Shandong University, which includes three
progression stages of liver fibrosis: early, middle and
last stages, validate that the performance gain with
the integration of the angular margin penalty are from
3% to 7% compared to the baseline models: VGG16,
ResNet18, and ResNet50.

1 Introduction

Any chronic liver disease and injury can lead to the
development of liver fibrosis, and without proper treat-
ment may proceed to severe cirrhosis, which greatly
increases the risk of the evolution into hepatocellular
carcinoma and liver failure [1]. Thus, monitoring the
progression state of liver fibrosis is of great clinical im-
portance to make proper decision of therapeutic plan
for prevention of fibrosis evolution or even reversing
fibrosis [2]. In clinical site, liver biopsy [3] is popu-
larly used as the gold standard method of liver fibrosis

staging, and has many shortcomings such as sampling
error, heavy pain and financial burden to the patients,
and high inter-observer variability.

Recently, as an alternative tool of the liver biopsy
for liver fibrosis staging, various non-invasive meth-
ods [4, 5, 6] have been investigated, such as biomarker
evaluation and liver morphological analysis by ultra-
sound or magnetic resonance. Most existing non-
invasive methods [7] for liver disease diagnosis are gen-
erally based on Ultrasonographic (US) and magnetic
resonance (MR) imaging elastographic techniques, and
the diagnosis is manually conducted by medical experts
and radiologists, which would lead to the subjective
result only and large inter-observer variability. Mo-
jsilovic et al. [8] proposed to model texture feature of
b-scan liver images, and quantitatively characterized
visually-similar liver diseases while Yeh et al. [9] ex-
plored gray level concurrence and the texture feature
based on non-separable wavelet transform for classify-
ing the liver fibrosis status. With the remarkable per-
formance boost of the deep convolutional neural net-
work (DCNN) on various computer vision tasks such
as image classification, object detection and segmenta-
tion, DCNN has been applied for Liver fibrosis diagno-
sis. Meng et al. [10] exploited transfer learning based
on VGGNet [11] and a fully-connected network as the
classifier for liver fibrosis using ultrasound images while
Liu et al. [12] proposed a multi-indicator guided DNN
using multiple ultrasound images, which is also based
on the VGGNet architecture. Later, Hectors et al. [13]
further exploited VGGNet-based transfer learning for
deep analysis of gadoxetic acid–enhanced MRI to fully
automated prediction of liver fibrosis. Although the the
diagnosis potential of the liver fibrosis using DCNN has
been verified, the prediction is far from the sufficient
performance via directly using the developed network
architecture for general image recognition without tak-
ing account of the characteristics in medical data.

This study exploits a novel discrimination-enhanced
deep learning network for liver fibrosis staging using
non-invasive MRI images. Due to the large variance
in both texture and shape of MRI liver images be-
tween patients and subtle distinctness among the pro-
gression stages of liver fibrosis, it is a challenge task
for accurate progression staging of liver cirrhosis via
simply minimizing the traditional softmax loss of the
DCNN-based classifiers, which is verified being insuffi-
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cient to capture the discriminating power for classifica-
tion [14, 15]. To enhance the capability of better dis-
criminating capturing, several variants have been pro-
posed to adopt multi-loss learning [16, 17, 18, 19, 20]
via integrating auxiliary losses into the traditional soft-
max loss. Therein, angular margin has been widely
explored due to its intrinsic consistency of angle’s co-
sine measure with softmax, and illustrated remarkable
performance gain and explainable interpretation for
face recognition tasks. This study leverages the an-
gular margin to enhance the discriminatingly learning
power of the DCNN model for liver fibrosis staging,
which is expected to enforce extra intra-class compact-
ness and inter-class discrepancy simultaneously. More-
over, we further incorporate the between-stage simi-
larity degree in the ongoing training procedure as a
dynamical fine-tuned margin penalty to guide the net-
work learning into the proper direction. Specifically,
we implement the angular margin constrained loss in
several classification neural network models such as
VGG16, ResNet18, and ResNet50, and conduct live
fibrosis staging on an MRI image dataset provided by
Shandong University, which includes three progression
stages of liver fibrosis: early, middle and last stages.
Extensive experiments illustrate that the performance
gain with the integration of the angular margin penalty
are from 3% to 7% compared to the baseline models:
VGG16, ResNet18, and ResNet50.

2 Proposed Approach

This study investigates various deep CNN architec-
tures for liver fibrosis staging using MRI images. To en-
courage discriminating feature learning, we exploit an
angular margin constrained loss (AMCL) instead of the
conventional Softmax loss, and further integrate the
between-class similarity of the class-corresponding nor-
malized vectors to fine-turn the angular margin for reg-
ularizing network training procedure toward the proper
direction. The overview of the proposed liver fibro-
sis staging network with AMCL is illustrated in Fig.
1, where the cropped rough liver region from the raw
MRI volume instead of finer segmented liver is used as
the network input. Given the i − th cropped liver re-
gion, belonging to yi− th class, we can use any DCNN
backbone architecture such as VGG and Resnet to ex-
tract d-dimensional deep feature xi ∈ Rd, and the most
widely used classification loss function is softmax loss,
which is expressed as:

LSM = − 1

N

N∑
i=1

log
efyi (xi)∑C
c=1 e

fc(xi)

fyi(xi) = WT
yixi + byi , fc(xi) = WT

c xi + bc

(1)

where Wc ∈ Rd denotes the c− th column of the class
weight W ∈ Rd×C and bc is the bias term for comput-
ing the c− th class score fc(xi) of the deep feature xi.

N and C are the batch size and the class number, re-
spectively. Then deep classification problem attempts
to optimize the network parameters to minimize the
softmax loss: LSM . However, the softmax loss func-
tion is insufficient to explicitly enforce the deep fea-
ture embedding with higher intra-class similarity and
large inter-class diversity, which unavoidably results in
performance drop especially for liver fibrosis staging
task under large intra-class texture and shape varia-
tions among the same stages’ MRI images of differ-
ent individuals and subtle distinctiveness among dif-
ferent stages’ images of the same patient. Therefore,
this study exploits an angular margin constrained loss
(AMCL) function to enhance the discriminating fea-
ture learning power, and further integrates dynamic
regularization on AMCL using the between class simi-
larity of the class weights in the ongoing training pro-
cedure.

2.1 Angular margin constrained loss

As formulated in Eq. 1, the c − th class score fc of
the i− th deep feature can be computed as: WT

c xi =
‖Wc‖‖xi‖ cos θc,i via fixing the bias bc = 0 for sim-
plicity, where θc,i is the angle between the c− th class
weight Wc and the feature xi. Following [19, 20, 21],
we fix the individual class weight ‖Wc‖ = 1 and the
embedding deep feature ‖xi‖ = s by l2 normalization.
Thus, the l2 normalization makes the learned embed-
ding features distributing on a hypersphere with a ra-
dius of s, and the softmax loss in Eq. 1 can be refor-
mulated according to the cosine value of the angle θc,i
(ASM) as

LASM = − 1

N

N∑
i=1

log
es cos(θyi,i)∑C
c=1 e

s cos(θc,i)
(2)

From the Eq. 2, it can be seen that the probabil-
ity of the i − th sample to the ground-truth yi class
should be higher than other classes given θyi,i < θc,i (or
cos θyi,i > cos θc,i). However, this lax loss function can-
not enforce the embedding feature to maximally close
to the ground-truth class weight and far from the other
class weights, and thus may result in some embedding
features in the margin regions and insufficient discrimi-
nating capability. To enhance the intra-class compact-
ness and inter-class discrepancy, we add an angular
margin penalty inside the cosine function to impose
that the angle between the embedding feature and the
ground-truth class weight should be more than margin
value smaller than other classes. The AMCL is then
expressed as

LAMCL = − 1

N

N∑
i=1

log
es cos(θyi,i+m)

es cos(θyi,i+m) +
∑C
c=1,c 6=yi e

s cos(θc,i)

(3)
where m is the fixed angular margin and needs to be
empirically decided while s is scalar value for adjusting
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Figure 1. The overview of the proposed AMCL framework. With a CNN backbone network, we can
extract the corresponding deep feature x following l2 normalization. The cosine of angle between the deep
feature and the class vector is utilized to formulate the softmax loss. To encourage discriminating feature
learning, the angular margin constrained loss (AMCL) and its dynamic regularization version (DR-AMCL)
is exploited in the right part.

the exponential function to give plausible probability
distribution. In the next subsection, we will introduce
the probability function evolution with the angular un-
der various angular margins m and the scalar s, and
then attempt to obtain the valid values of m and s
for our liver fibrosis staging task. As we know that
the network parameters are updated according to the
computed loss of the current batch samples, and thus
may result in unstable network learning with the sam-
ple change in each training step. While the learned
class weights Wc in the ongoing training procedure can
provide an indicator of the network status, and the be-
tween class similarities of the weight vector of different
classes possibly measure the discriminating capability
of the current network. Thus, we adaptively exploit
the between-class similarities as a dynamical margin
to regularize the network training toward the proper
direction, dubbed as dynamically regularized AMCL
(DR-AMCL). The dynamical margin (DM) using the
class vector is calculated as

mDM =

C∑
j=1

j−1∑
k=1

WT
j Wk (4)

The schematic illustration of the proposed DR-
AMCL is given in the right part of Fig. 1, and can
then be formulated as:

LDR = − 1

N

N∑
i=1

log
es cos(θyi,i+m) −mDM

es cos(θyi,i+m)−mDM +
∑C
c=1,c 6=yi e

s cos(θc,i)

(5)

2.2 Effect of the hyper-parameter: s and m

The goal of the classification network training is to
get the plausible high probability Pyi,i with enough
small angle θyi,i regardless to the hyper-parameter val-
ues. It is obvious that Pyi,i has the value range [0, 1]
while θyi,i corresponds to the range [π2 , 0]. As verified

in [22], The angles θc,i for non-corresponding classes
c 6= yi during the training procedure almost remain

around π
2 , and thus

∑C
c=1,c 6=yi e

s cos(θc,i) in Eq. 5 can

be simplified to
∑C
c=1,c6=yi e

s cos(π2 ) = C − 1 as a con-
stant. With this empirical insight, we validate the evo-
lution of the corresponding class probability Pyi,i w.r.t
θyi,i under various hyper-parameter values s and m.
For our liver fibrosis staging task (C = 3), the curves
of Pyi,i w.r.t θyi,i under different s and m are plotted
in Fig. 2, which manifests the influence on the Pyi,i
especially by the scale parameter s. For network train-
ing, we prefer that the training samples even with high
confidence on the corresponding class still can penal-
ize the classification results for network updating, and
thus we can see from the curve that s with values from
20 to 30 while m with values from 0.4 to 0.6 have this
satisfactory properties. In our experiments, we fix s as
30 and change m from 0.4 to 0.6 with 0.05 interval for
verifying the liver staging performances.

Figure 2. The evolution of Pyi,i w.s.t θyi,i under
various scales s and margins m for our liver fibro-
sis staging task (C = 3). Left: The probability
Pyi,i with various scales s and the fixed margin
m = 0.5. Right: The probability Pyi,i with var-
ious margins m and the fixed scale s = 30. .

3 Experimental results

3.1 Experimental setup

Dataset: We validate the liver staging performance
of our proposed (DR-) AMCL framework using the



Table 1. The compared overall accuracy and mis-
staging rates using different backbone architec-
tures w/o the AMCL or DR-AMCL constraints.

Methods Acc MR: A→C MR: C→A

VGG16 0.6461 0.0092 0.1711
VGG16+AMCL 0.6813 0.0474 0.2201

VGG16+DR-AMCL 0.6812 0.0189 0.2197
ResNet18 0.6658 0.0207 0.0617

ResNet18+AMCL 0.7175 0.0194 0.0199
ResNet18+DR-AMCL 0.7196 0.0097 0.0179

ResNet50 0.6514 0.0496 0.0369
ResNet50+AMCL 0.7277 0.0340 0.0087

ResNet50+DR-AMCL 0.7302 0.0094 0.0512

MRI image dataset provided by Shandong University,
China. This dataset consists of 117 patients MRI vol-
umes with three liver fibrosis stages: early (A), middle
(B) and last (C), and each is captured in a short pe-
riod of time from an individual patient. From the 117
patients MRI volumes, we roughly cropped 2805 liver
regions including 934 A-state images, 1269 B-stage im-
ages, and 602 C-stage images, without fine segmenta-
tion as shown in the left part of Fig. 1, where 80% of
them were used for training, and the remaining images
from different volumes with the training set were for
testing.

Detail implementation: We adopted VGG16,
ResNet18, and ResNet50 as the backbone network ar-
chitectures, and Adam was used as the optimization
method. The network was trained with 100 epochs
and the used learning rate: 0.00005, To avoid vari-
ation of staging accuracy due to the division of the
training and testing subsets, we conducted 6 runs of
experiments with randomly selected training and test-
ing subsets, and calculated the average values of 6 runs
as the final evaluation for comparison. Two evaluation
metrics including the overall accuracy of all stages and
the F-score for each stage are used in performance com-
parison. Moreover, since the mis-staging from A to C
or C to A is eager to be avoid in the clinic site, we fur-
ther compute the mis-staging rate (MR: A→C, MR:
C→A) for verifying our proposed liver fibrosis staging
method.

3.2 Experimental result

Table 1 manifests the compared overall accuracy of
the liver fibrosis staging, and the mis-staging rates from
A to C or C to A using different backbone architec-
tures w/o AMCL or DR-AMCL. It can observe from
Table 1 that the integration of the AMCL into all net-
work architectures can greatly boost the staging perfor-
mance of liver fibrosis, and further performance gains
on the ResNet 18 and ResNet50 has been obtained with
the dynamical regularization on AMCL (DR-AMCL).
Moreover, the mis-staging rates (A→C and C→A) us-
ing ResNets are also decreased with AMCL and DR-
AMCL methods. Table 2 gives the compared F-scores

of all stages (A, B and C), and validates that the inte-
gration of the AMCL and DR-AMCL into the ResNet
architectures can greatly improve the F-scores of the
severe liver fibrosis samples, which are especially im-
portant to get the precise staging scores for these severe
patients in clinic site.

Table 2. The compared F-score of each liver fibro-
sis stage using different backbone architectures
w/o the AMCL or DR-AMCL constraints.

Methods F: A F: B F: C

VGG16 0.8060 0.7081 0.1510
VGG16+AMCL 0.7949 0.7106 0.3138

VGG16+DR-AMCL 0.8138 0.6911 0.2602
ResNet18 0.8598 0.6517 0.3439

ResNet18+AMCL 0.8645 0.6812 0.4837
ResNet18+DR-AMCL 0.8477 0.7087 0.5118

ResNet50 0.8644 0.6238 0.3578
ResNet50+AMCL 0.8641 0.7133 0.4574

ResNet50+DR-AMCL 0.8336 0.7160 0.5506

Finally, the compared accuracies using the ResNet50
backbone architecture with different angular margins
m are shown in Table 3. It can be seen that the AMCL
provides better performance with small margins while
the proposed DR-AMCL achieves better performance
with large margins. We are going to exploit the optimal
margins in different deep backbone architectures for
the liver fibrosis staging task.

Table 3. The compared accuracy on the ResNet50
architecture with different angular margins m

m 0.40 0.45 0.50 0.55 0.60
AMCL 0.7206 0.7277 0.7142 0.6917 0.7048

DR-AMCL 0.7180 0.7180 0.7250 0.6991 0.7302

4 Conclusion

This study proposed a novel deep learning-based
liver fibrosis staging framework using non-invasive MRI
images. To enforce high discriminating capability, we
exploited a angular margin constrained loss (AMCL)
to train more generalized deep models. Moreover, to
dynamically adjust the network training procedure to-
ward proper direction, we investigated the between-
class similarity, which inherently evaluates the network
status, to regularize the predefined angular margin,
and then formulated a dynamically regularized AMCL
(DR-AMCL) for liver fibrosis staging. Experiments on
an MRI dataset validated our proposed deep meth-
ods with the AMCL and DR-AMCL outperformed the
baseline models: VGG16, ResNet18, and ResNet50.
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