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Abstract

In this paper, we propose a novel frame index vision
transformer for video summarization. Given training
frames, we linearly project the content of the frames to
obtain frame embedding. By incorporating the frame
embedding with the index embedding and class embed-
ding, the proposed frame index vision transformer can
be efficiently and effectively applied to learn the im-
portance of the input frames. As shown in the exper-
imental results, the proposed method outperforms the
state-of-the-art deep learning methods including recur-
rent neural network (RNN) and convolutional neural
network (CNN) based methods in both of the SumMe
and TVSum datasets. In addition, our method can
achieve real-time computational efficiency during test-
ing.

1 Introduction

With the increasing number of videos in the Inter-
net, efficiently browsing videos becomes one of the most
important issues in the multimedia domain. To reduce
the browsing time, video summarization [1, 2, 3] is pro-
posed to extract important video content and generates
a compact summary for efficient browsing. It can also
be applied to video saliency analysis [4, 5] and video
surveillance [6, 7].

Video summarization methods can be mainly di-
vided to unsupervised methods [8, 9] and supervised
methods [10, 11]. Although unsupervised methods
can extract keyframes based on similarity and repre-
sentative properties of frames, they are hard to grab
the important semantic concept which is meaningful
for humans. In addition, human-created summaries
are hard to be learned by unsupervised methods. To
solve the aforementioned problems, supervised meth-
ods are proposed which can learn the frame impor-
tance from human-created summaries. Nevertheless,
the summaries labeled by different people will be vari-
ant because of individual differences. How to explicitly
learn the frame importance from human-created sum-
maries becomes a novel issue in video summarization.

Recently, deep learning based methods especially re-
current neural network (RNN) based methods [11, 12]
have been shown their effectiveness for supervised
video summarization. RNN based methods formulate
the video summarization problem as a sequence-to-

sequence problem. Thus, these methods can well learn
the relationship between continuous frames. Most
RNN based methods consider continuous neighbor
frames when learning the importance of the human-
created summaries. Nevertheless, the important con-
tent of the video may not continuously appear due to
the shot changes [13] of the video content.

To address aforementioned issues and effectively rep-
resent the frame information for video summarization,
we propose a novel frame index vision transformer
(FIVT) which is inspired by the vision transformer [14].
Different from [14] which only considers split words of
a single image, we consider the continuous frames as
the words to describe the importance of the video for
video summarization. To apply the training frames to
the transformer encoders, we linearly project the con-
tinuous frames to obtain the frame embedding. Besides
the frame embedding, we also add the index embedding
to maintain the temporal information of the continu-
ous frames. Finally, the class embedding is added to
indicate if the continuous frames belong to important
video content or not for video summarization. By con-
sisting of these three embeddings, embedded frames are
constructed and serve as the input of the transformer
encoder.

Because the transformer encoder has been shown
its performance in learning long-term relationship [15],
we use the transformer encoder to learn the important
video content based on the embedded frames. Each
transformer encoder contains a self-attention module
which aims to learn representative features of the video
content, and a fully connected module which feeds for-
ward the features to the next layer. We have evaluated
the proposed method in two popular video summariza-
tion datasets, SumMe [16] and TVSum [3]. As shown
in the experiments, the proposed method can achieve
better results compared with the state-of-the-art meth-
ods. The paper is organized as follows. Sec. 2 gives the
related work. The proposed frame index vision trans-
former is presented in Sec. 3. Experimental results and
comparisons are shown in Sec. 4. Finally, the conclu-
sions are given in Sec. 5.

2 Related Work

Unsupervised video summarization methods can be
mainly divided into clustering based methods [8, 17]
and dictionary based methods [9, 18]. Although un-
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Figure 1. The proposed frame index vision transformer. The frame embedding, index embedding and class
embedding are used to generate the embedded frame for the transformer encoder.

supervised methods can extract keyframes from target
videos, the results may not fit the semantic concept of
human beings.

To solve this problem, supervised methods have
been proposed to learn what is the important content
of the video based on human-created summaries. For
example, Gong et al. [10] propose the sequential deter-
minantal point process (seqDPP) to model the impor-
tant video content for video summarization. In [19],
sequential and hierarchical DPP is further proposed
to improve the performance. Potapov et al. [20] per-
form temporal segmentation to obtain semantically-
consistent segments and apply the support vector ma-
chine [21] to assign importance scores to each segment.
Gygli et al. [22] consider jointly optimization of multi-
ple objective functions to obtain video summarization.

More recently, deep learning based video summa-
rization methods are proposed. Zhang et al. [11] pro-
pose using long short-term memory (LSTM) of RNN
to solve the video summarization problem. Mahas-
seni et al. [23] propose an adversarial LSTM network
where the discriminator LSTM aims to distinguish the
original video and its reconstruction from the LSTM
summarizer. Both supervised and unsupervised ver-
sions are provided in [23]. Zhao et al. [24] propose
a hierarchical structure-adaptive RNN (HAS-RNN) to
solve the shot segmentation and video summarization
problems. Huang et al. [25] sequentially combine 2-
D CNNs, 1-D CNNs, and LSTM to learn the frame-
level importance scores. To select semantic keyshots,
Ji et al. [12] propose an attentive encoder–decoder net-
work which contains bidirectional LSTM encoders and

attention based LSTM decoders. Zhu et al. [26] pro-
pose a detect-to-summarize network (DSNet) to ob-
tain temporal interest proposals and directly predict
the importance of video segments. Instead of impos-
ing RNN, Rochan et al. [27] propose a fully convolu-
tional sequence network (FCSN) to model the complex
dependency among input frames. Fajtl et al. [28] pro-
pose a self-attention based sequence to sequence net-
work which consists of the attention network and the
regressor network for video summarization. Compared
with deep learning based methods, the proposed frame
index vision transformer can learn the importance from
frames based on the transformer encoders and achieve
comparable results.

3 Method

The overview of the proposed frame index vision
transformer is shown in Figure 1. The input frames are
linearly projected to flattened frames as the frame em-
bedding, and then combined with the index embedding
and the class embedding to generate the embedded
frame for the input of the transformer encoder. Each
transformer encoder contains a self-attention module
and a fully connected module to learn representative
features. Finally, two fully connected layers are imple-
mented to generate video summarization results.

3.1 Frame Index Vision Transformer

The proposed frame index vision transformer is in-
spired by the vision transformer [14]. In the vision
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Figure 2. (a) The self-attention module and (b)
The fully connected module. The black dot rect-
angle represents the MLP.

transformer, each image is split into a sequence of 2-D
image patches. These patches provide the words of the
image and serve as the input of the vision transformer.
The vision transformer is then used to learn the correla-
tions between the image patches and the target class.
Different from the vision transformer, we would like
to learn if the frames contain important information
for video summarization. Given a training video of F
frames, we sequentially and equally partition the video
to subsets for training. Each subset contains N contin-
uous frames which are denoted as f = {f1, f2, ....fN}
and the classification label of the subset is given by the
human-created ground truth. f in each subset serves
as the input of the frame index vision transformer and
we impose the indices of the frames for the temporal
representation.

Let the dimension of the frame be RH×W×C , where
W , H and C are the width, the height and the num-
ber of channels of the frame. Similar to previous deep
learning approaches, the resolution of all of the frames
is resized to 224×224 and the number of channels is 3.
We generate a sequence f ∈ RN×M , where N = 9 is the
number of input frames and M = H×W×C. For each
sequence, a learnable frame embedding is prepended
to indicate if the input sequence contains important
scenes. The index embedding is added to the frame em-
bedding to present temporal information for the input
frames. The frame embedding, index embedding and
class embedding of the training frames are combined
to an embedded frame which serves as the input of the
transformer encoder. In this way, it is not necessary to
modify the structure of the transformer encoder.

The transformer encoder is composed of a self-
attention module, and a fully connected module. The
initial input (the embedded frame) of the transformer
encoder is defined as follows:

z0 = [xclass;x
1
fE;x2

fE; ...;xN
f E] + Eidx, (1)

where xclass is the class embedding, E is the embed-
ding projection of all frames, xn

f is the nth frame,
Eidx is the index embedding, and the dimensions of E
and Eidx areR(W ·H·C)×D andR(N+1)×D, respectively.
D = 768 is the dimension of the linear projection sug-
gested in [14]. Layer normalization (LN) is applied to
each module for feature normalization and a residual
connection [29] is applied to connect in each module.

The self-attention module contains the multi-head
attention [15] and is shown in Figure 2(a). Here, the
fully connected layer is used to expand the normalized
features and generate new representation subspaces.
The output of the multi-head attention is based on
weighted sums of the values of different representation
subspaces at different positions. Due to limited space,
please refer to [15] for details. The weights of the values
are computed from the pairwise similarity of their cor-
responding respective query and key representations.

Given the input vector z0 of the first transformer
encoder, assume that the number of the self-attention
operation is k. The multi-head self-attention of the
`th self-attention module of the transformer encoder is
defined as follows:

MSA(ẑ`−1) = [SA1(ẑ`−1), ..., SAk(ẑ`−1)]Umsa, (2)

where z`−1 is the output of the (`− 1)th transformer
encoder, ẑ`−1 = LN(z`−1) is the layer normaliza-
tion result of z`−1, LN(·) is the layer normalization
function, SAk is the self-attention [15] and Umsa ∈
Rk·Dh×D. As suggested in [14], we set k = 12 and
Dh = D/k. The output z′` of the `th self-attention
module is composed of the multi-head attention and a
residual connection of the input as follows:

z′` = MSA(ẑ`−1) + z`−1. (3)

The fully connected module is applied to the output
of the self-attention module. This module consists of
a LN and a multilayer perceptron (MLP). The MLP
contains two fully connected layers as shown in Figure
2(b) and is represented by the function MLP (·). The
output of the `th fully connected module is defined as

z` = MLP (ẑ′`) + z′`, (4)

where ẑ′` = LN(z′`), and z′` is the residual connection
of the output of the self-attention module.

Finally, two fully connected layers are implemented
after the last transformer encoder, and a soft-max func-
tion is applied after the final fully connected layer for
the importance classification. In our implementation,
the number of the transformer encoders is 12. The
sizes of the last two fully connected layers are 768 and
2, respectively.

4 Experimental Results

In the experiments, two popular video summariza-
tion datasets, SumMe [16] and TVSum [3], were used



Table 1. Ablation Study in F-Score (%)

Methods SumMe TVSum
w/o Warmup and Index 43.5 54.1

w/o Index 45.2 58.3
w/o Warmup 48.1 61.9

Proposed 49.0 62.3

Table 2. Comparisons with State-of-the-Art
Methods in F-Score (%)

Methods SumMe TVSum
dppLSTM [11] 38.6 54.7

SUM-GANsup [23] 41.7 56.3
HAS-RNN [24] 44.1 59.8

FCSN [27] 47.5 56.8
TS-STN [25] 46.1 60.0
M-AVS [12] 44.4 61.0
Proposed 49.0 62.3

for evaluation. The SumMe dataset contains 25 videos
of user events with manually labeled summaries. The
TVSum dataset contains 50 videos with shot-level
scores and 10 video categories. We followed the ex-
perimental settings in [11] for the evaluation in both
datasets and computed the F-Score values of the pro-
posed method for comparisons.

During training, we used a warm up strategy which
applied the learning rate from 0.05 to 0.5 in the first
10 epochs and the cosine learning rate decay [30] in
the following epochs. The batch size is 30 and the
parameters of the FIVT is updated by using SGD with
a momentum of 0.9. We performed our experiments on
an Intel i7 computer with Nvidia GTX 2080Ti GPU
and implemented our method by using PyTorch.

4.1 Ablation Study

In our approach, we add the index embedding to
help the training of the transformer encoder. More-
over, we consider the warm up strategy to update the
parameters of the proposed FIVT. To address the ef-
fectiveness of these two factors, ablation study is per-
formed as shown in Table 1. As we expected, the pro-
posed method without the warm up strategy and the
index embedding (w/o Warmup and Index) achieves
the worst results. Compared with the proposed method
without the index embedding (w/o Index), the pro-
posed method without the warm up strategy (w/o
Warmup) has better results. These results imply that
the importance of applying the index embedding in the
proposed method for video summarization. Neverthe-
less, the proposed method with both factors achieves
the best results in both datasets.

4.2 Quantitative Results

We compared the proposed method with several
state-of-the-art video summarization methods includ-
ing dppLSTM [11], SUM-GANsup [23], HAS-RNN [24],
FCSN [27], TS-STN [25], and M-AVS [12]. As shown in
Table 2, the proposed method outperforms these state-
of-the-art methods in both of the SumMe and TVSum
datasets. Compared with deep learning based methods
which use frame pixels as the inputs of the networks,
the embedded frames provide more representative in-
formation by simultaneously consisting of the frame
embedding, index embedding and class embedding for
the transformer encoder learning. By using the embed-
ded frames, our frame index vision transformer can ef-
fectively learn the correlations between the frames and
human-created summaries. Thus, it can achieve bet-
ter F-Score values compared with deep learning based
methods.

During testing, the average frames per second (fps)
of the proposed method are about 58 and 56 for the
SumMe and TVSum datasets, respectively. The com-
putational efficiency of the proposed method relies on
the the design of the embedded frames and the trans-
former encoder. As a result, the proposed method can
be applied for real-time content analysis.

5 Conclusions

In this paper, we propose a frame index vision trans-
former to achieve video summarization. Different from
RNN based methods, the proposed method treats the
frames as a sequence of words and input the frames
to the transformer encoder. Because frames contain
continuous information of the important content of
the videos, transformer encoder can learn representa-
tive features for the video summarization. In addition,
by considering the index embedding in the embedded
frames, the proposed method can achieve better re-
sults compared with the state-of-the-art methods. In
the future, we will focus on the challenge of improv-
ing self-supervised pre-training to further improve the
performance in learning the important content of the
training videos.
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