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Abstract

Path prediction methods using graph convolutional
networks (GCNs) that represent pedestrians’ relation-
ships by graphs have been proposed. These GCN-based
methods consider only the distance information for the
relationship between pedestrians, and the visibility state
and other relationships are not taken into account. In
this paper, we propose a path prediction method that
represents the detailed relationship between pedestrians
by introducing relational subgraphs. Each subgraph is
constructed on different relationships. The proposed
method inputs these relational subgraphs and the dis-
tance graph into GCNs and we extract features. Then,
the features are input to a temporal convolutional net-
work, which outputs multivariate Gaussian parameters
to predict the future path. The experimental results with
ETH and UCY datasets show that the proposed method
outperforms the conventional method using only the
distance information.

1 Introduction

Path prediction, which predicts the future paths of
moving objects such as pedestrians and vehicles, is a
fundamental problem. In particular, predicting pedes-
trians’ paths plays an important role in various applica-
tions such as autonomous driving and surveillance sys-
tems. For example, by predicting pedestrians’ paths in
autonomous driving and robotics application, vehicles
can be controlled to avoid collision with them appropri-
ately. In surveillance systems, the path of pedestrians
can be predicted to identify unusual activities such as
collisions. Consequently, path prediction is expected

to be used in various fields and has been widely ad-
dressed [3, 4, 5, 7, 9]. For accurate path prediction,
it is important to consider various auxiliary informa-
tion such as the pedestrian’s direction and posture,
the behavior of other pedestrians, and the surround-
ing static environment. In particular, understanding
the behavior of other pedestrians, i.e., considering the
interactions among pedestrians is expected to realize
path prediction that avoids collisions among pedestri-
ans.

For these purposes, a path prediction method that
considers the interactions between pedestrians in a
graph convolutional network (GCN) has been pro-
posed [7, 9]. In these methods, the edges in the graph
structure are weighted with the distance information
between pedestrians. The future path is predicted from
the weighted edges and the nodes with each pedes-
trian’s past positions. However, these methods con-
sider only the distance information between the ob-
jects as interactions. Human relationships are not only
distances and are also complex and diverse, such as
destinations and groups. Therefore, considering inter-
actions by only distance ignores the diversity and com-
plexity of relationships.

In this paper, we propose a graph-based path predic-
tion method that introduces the relational subgraphs.
The relational subgraph represents several relation-
ships between pedestrians, such as the direction of
pedestrian movement and the distance between ob-
jects. We construct these graph structures and input
them into GCNs to extract features. The extracted
features are input to a temporal convolutional network
(TCN) [2], which outputs the multivariate Gaussian
parameters to predict future paths. The proposed re-
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lational subgraph enables path prediction to take into
account diverse and complex relationships. In our eval-
uation experiment, we demonstrate the effect of intro-
ducing diverse and complex relationships.

2 Related work

Path prediction for pedestrians has been widely in-
vestigated in the last few years due to deep learning
[3, 4, 5, 6, 7, 9].

The standard and primal approach is based on a
long short-term memory (LSTM) [3, 4]. LSTM-based
approach encodes the past pedestrian’s path, i.e., co-
ordinates, by LSTM. Since an LSTM network encodes
only a single pedestrian path, these methods consider
the relationship between pedestrians by spatially en-
coding features of the target and the other pedestrians
[3] or directly pooling these features [4].

Apart from the above approaches, our method is
based on graph representation and GCNs. The graph-
based path prediction methods have been proposed
[7, 9]. These methods represent the relationship be-
tween pedestrians as graph representation and con-
sider the interactions. These methods define a fully
connected spatio-temporal graph structure weighted by
relative distance and predict using GCN [7, 9]. How-
ever, it is difficult for these methods to sufficiently rep-
resent the relationships because they utilize only dis-
tance information. Meanwhile, we propose using a sub-
graph in which only some nodes are connected to con-
sider other relations.

Since the future path is unknown, there exist several
possibilities for selecting a pedestrian path. For con-
sidering such diversity of future paths, the path pre-
diction approach probabilistically predicts the future
paths by sampling future paths from randomized la-
tent variables have been proposed [4, 5]. We also pre-
dict future paths as probabilistic distributions. Our
method estimates the multivariate Gaussian distribu-
tion parameters from our proposed network and pre-
dicts future paths by sampling path based on the esti-
mated distribution.

3 Method

In this section, we introduce the proposed path pre-
diction method. Our method introduces the relational
subgraphs to consider the state and relationship of
pedestrians and the distance graph used by conven-
tional methods.

Figure 1 shows the network structure of the pro-
posed method. The proposed method consists of two
modules. Given N pedestrians, we construct two
graphs: the distance graph and the relational sub-
graph. We create these graphs for each observation
time step t ∈ {1, . . . , TO} and input them for the
following modules. The first module is GCN, which
extracts graph features from input graphs. In this

module, we separately extract features from two in-
put graphs. Then, these features are aggregated into
one by point-wise convolution. The second module is
a TCN that takes the extracted graph features and
outputs multivariate Gaussian distribution parameters.
Based on the obtained parameters, we predicts the fu-
ture paths by sampling two-dimensional coordinates
pn
t = (xnt , y

n
t ), where t ∈ 1, . . . , TP during prediction

time step. Hereafter, we describe the details of the
proposed method.

3.1 Distance graph

Let Gt = (Vt, Et) be a graph that represents the
position and relationship between pedestrians, where
Vt = {vt|∀i ∈ {1, . . . , N}} and Et = {ei,j |∀i, j ∈
{1, . . . , N}} are nodes and edges, respectively. We cre-
ate a graph for each time step t, and the node con-
tains each pedestrian’s location information at t. Edges
represent the relationship between pedestrians and the
strength of mutual influences. The distance graph used
in existing works [7, 9], represents the influences by
using distance. Figure 2(a) shows an example of the
distance graph. When the nodes are connected, we
use the inverse of the L2 distance for ei,j . If they are
disconnected, ei,j = 0.

3.2 Relational Subgraph

The relationship and influence do not derive only
from a distance. The other factor would affect the fu-
ture path. In this paper, we introduce the relational
subgraph to represent the detailed relationship, and we
propose the following relational subgraphs. We show
the examples of the relational subgraphs in Figs. 2(b-
f).

Short subgraph connects edges whose distance is
lower than the threshold (1.2m), which consider only
near neighbors and suppress the influence from the dis-
tant pedestrian. The speed subgraph connects edges if
the difference of movement in one frame is lower than
the threshold (0.5m). The direction subgraph repre-
sents whether pedestrians move in the same direction
or not. The edge is connected if the cosine similarity
is larger than the threshold (0.5). The group subgraph
represents the group behavior of several pedestrians.
We define the group subgraph by the element product
of three subgraphs: short, speed, and direction. The
visibility status subgraph indicates whether the target
is included in the viewing angle. We set the viewing
angle of a person as 200 degrees. We connect edges of
the pedestrians in the viewing range are targeted.

3.3 Graph Convolutional Network

Given the direction graph and the relational sub-
graph, we extract graph features by GCNs. The node
feature vi is computed by aggregating from itself vi and
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Figure 1. Network structure of the proposed method.
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Figure 2. The structures of (a) distance graph and
(b-f) relational subgraphs.

the neighbors B(vi) as follows:

v̂i = σ

 1

Ω

∑
vj∈B(vi)

p
(
vi, vj

)
·w
(
vi, vj

) , (1)

where, σ is an activation function, p(·) is a sampling
function for aggregating neighbouring node features,
and w is trainable parameters. Note that 1

Ω denotes
the normalization term.

The extracted features from the distance graph and
the relational subgraphs are aggregated as a single
graph feature by point-wise convolution. We compute
features for each time step separately.

3.4 Temporal Convolutional Network

We then predict the future path by the extracted
features and TCN. We concatenate the extracted fea-
tures in the time step direction and apply temporal

convolution. The output of TCN is the parameters of
a multivariate Gaussian distribution: mean µn

t , vari-
ance σn

t , and correlation ρnt for each prediction step t
and each pedestrian n. The future coordinates pn

t is
sampled by using the distribution by

pn
t ∼ N (µn

t , σ
n
t , ρ

n
t ). (2)

To train the network, we compute a negative log-
likelihood loss as follows:

Ln (W) = −
TP∑
t=1

log (P (pn
t |µn

t , σ
n
t , ρ

n
t )) , (3)

where W is every trainable parameters in the network.

4 Experiments

In this experiment, we examine the effectiveness of
the proposed method and each relational subgraph.

4.1 Experimental Settings

We use ETH [10] and UCY [11] datasets for our
evaluation. Through our experiments, the observation
time is 3.2 seconds (TO = 8), and the prediction time
is 4.8 seconds (TP = 12). The GCN consists of a single
convolutional layer, and the TCN has three convolu-
tional layers. The kernel sizes of every convolutional
layer in the TCN are 3 × 3 × TP . For network train-
ing, we used a stochastic gradient descent optimization
whose learning rate is 0.01. The batch size is 128, and
the number of epochs is 250.

We compare the performance with Social-STGCNN
[9], which uses only the distance graph as an input. As
we mentioned in the previous section, we use the fol-
lowing relational subgraphs as the proposed method:
short, speed, direction, group, and visible state (visi-
ble). We compare these prediction performances. As
evaluation metrics, we use the average displacement



Table 1. ADE and FDE metrics on ETH/UCY datasets

Graphs
eth hotel univ zara1 zara2 average

ADE/FDE ADE/FDE ADE/FDE ADE/FDE ADE/FDE ADE/FDE

Distance only [9] 0.73/1.23 0.33/0.41 0.49/0.82 0.34/0.57 0.30/0.50 0.44/0.71

Short 0.72/1.20 0.35/0.41 0.46/0.85 0.33/0.56 0.32/0.52 0.44/0.71

Speed 0.68/1.21 0.24/0.34 0.57/0.95 0.40/0.67 0.35/0.54 0.45/0.75

Direction 0.73/1.10 0.23/0.31 0.50/0.90 0.37/0.58 0.32/0.50 0.43/0.68

Group 0.63/0.98 0.20/0.27 0.51/0.86 0.35/0.57 0.34/0.50 0.41/0.64

Visible 0.64/0.99 0.22/0.29 0.49/0.86 0.34/0.51 0.30/0.48 0.40/0.63

Distance only [9] Short Speed Direction Group Visible

eth

hotel

univ

zara1

Figure 3. Visualization results of predicted paths on ETH and UCY datasets.

error (ADE) and the final displacement error (FDE).
ADE is the average of the Euclidean distance between
the predicted and true value at each prediction time.
FDE is the Euclidean distance between the predicted
and true value at the final prediction time.

4.2 Results

First, we show the quantitative results with ADE
and FDE in Tab. 1. Except for univ, our method with
group or visible achieved higher performances than the
results of distance only [9]. These subgraphs success-
fully restrict the influence from unrelated pedestrian to
decide own path.

In the results of univ, the short subgraph achieved
a lower error. The univ data is a crowded scene, and
there are many pedestrians. In such a case, restricting
the distant pedestrians’ connection suppresses unnec-

essary influence and could improve accuracy.
In the cases of speed and direction subgraphs, there

were no improvements. Moreover, the short subgraph
does not improve the accuracy except for univ. The
reason for the inaccurate results is that the graph struc-
ture using multiple simple relations becomes complex,
which hinders the improvement of accuracy.

4.3 Visualization Results

We show the visualization results of predicted paths
in Fig. 3.

The top row in Fig. 3 shows the results of eth, where
two pedestrians (orange and blue) move together. In
the distance only [9], the blue pedestrian tries to avoid
collision with the orange pedestrian, resulting in blue
one contact with the green pedestrian. Also, the results
of short, speed, direction subgraphs failed to predict



correct paths. Meanwhile, the group subgraph assumes
blue and orange pedestrians as the same group, and we
can successfully predict their paths.

As we discussed above, univ is a crowded scene
and one of the most challenging scenes in ETH/UCY
datasets. The third row in Fig. 3 shows the results of
univ. The predicted paths of the short subgraph are
rather converged compared with another result.

In the bottom row in Fig. 3, pedestrians move in
the same direction. The group subgraph assumes these
pedestrians as the same group. As a result, orange
pedestrian follows neighbor green, blue, and red pedes-
trians and failed to predict path. The visible subgraph
can predict the path because we can ignore the effects
from behind.

5 Conclusion

In this paper, we proposed a path prediction method
using relational subgraphs to represent richer social in-
teractions. Each subgraph represents a specific rela-
tionship between pedestrians and the surrounding ob-
jects, such as the direction of pedestrian movement and
visibility state. The relational subgraph enables us to
predict a more accurate future path. In the experimen-
tal results with ETH and UCY datasets, the proposed
method outperform the conventional methods, and we
showed the effectiveness of the relational subgraphs.
Our future work includes automatic generation of rela-
tional subgraphs and improvement of the network.
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