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Abstract 

For quality control of special steels, the microstructure 

of the steel is visually inspected on the basis of microscopic 

images. In this study, aiming to eliminate the effect of per-

sonal differences between inspectors and reduce inspection 

costs, a system for automatically estimating quality level 

(hereafter, “automatic-quality-level-estimation system”) 

based on machine learning is proposed and evaluated. Col-

lecting the images is a manual task performed by the 

inspector, and it is difficult to prepare multiple training 

samples in advance. As for the proposed method, overfitting, 

which is a problem in training with few samples, is sup-

pressed by data expansion based on variation distribution 

of correct-answer values. The correct-answer rate for judg-

ing quality level by an inspector was about 90%, while the 

proposed method achieved a rate of 90%, which is sufficient 

to render the method practically applicable. 

1. Introduction 

Special steel has excellent heat resistance and corrosion 

resistance, and it is used in a wide range of fields such as 

tool steel, electronic materials, industrial-equipment mate-

rials, and aircraft-related materials.  Special steel is 

manufactured through the processes of casting, rolling, 

forging, and heat treatment, and inspecting the metallo-

graphic structure of the manufactured steel is essential to 

guarantee high quality. One of the inspection methods used 

is a “microstructure test”—in which the inspector visually 

judges the quality of the metal structure by examining in-

spection images taken with a microscope [1]. Examples of 

such images are shown in Figure 1. The white bands and 

grains in the images are carbides, and it is known that the 

shape of these carbides is highly correlated with the physi-

cal characteristics of special steel. The inspector compares 

a sample photograph (prepared in advance) for each quality 

level with the inspection image, and judges the quality level 

from the similarity. The quality level of sample 1 is higher 

than that of sample 2 in Figure 1. The quality level is 

 
Fig. 1: Sample of microstructure image 

 

described in detail in Section 2. In the meantime, different 

pattern variations in the shape of the microstructure occur, 

and several quality levels may be mixed up in the image. 

Accordingly, judging the quality level is a sensory evalua-

tion that depends on the skill of the inspector, and the 

judgment results even between skilled inspectors may vary. 

In this study, a system for automatically estimating the 

quality level (hereafter, “automatic quality-level estimation 

system”) by machine learning—which aims to eliminate the 

influence of personal differences between inspectors on mi-

crostructure tests and reduce inspection costs—is proposed 

and evaluated. In recent years, a proposal called “a deep 

network model,” represented by a convolutional neural net-

work (CNN), has considerably improved the performance 

of machine learning [2][3]. On the contrary, as for machine 

learning, so-called “overfitting,” namely, generalization 

performance deteriorates owing to over-optimization in re-

gard to specific training data, is problematic. As mentioned 

above, while many variations exist in an inspection image, 

it is difficult for the inspector to (i) manually collect images 

and assign a quality level for each image and (ii) prepare a 

lot of training data. Moreover, the correct-answer value for 

the quality level taught includes fluctuations in judgment 

due to individual differences between inspectors and incor-

rect training. Under that condition, overfitting is considered 

to be particularly likely to occur. Data augmentation is 

known as common method of suppressing overfitting [4]. 

As for the proposed method as well, the aim is to achieve 

the same or better estimation performance as that achieved 

by an inspector by incorporating algorithms that apply data 

augmentation. 
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2. Quality-level-estimation system 

The proposed automatic quality-level estimation system, 

which consists of a learning phase and an estimation phase, 

is shown schematically in Figure 2. In the learning phase, 

multiple inspection images for learning {f i } (i = 1, … , Nf ) 

are acquired by microscope. For each inspection image, the 

inspector assigns the value of the correct answer for the 

quality level (gi) in nine steps from 1.0 to 5.0 in increments 

of 0.5, and those levels are taken as training data {(fi, gi)}, 

the smaller the value of which, the higher the quality. With 

the inspection images as the input and the quality level as 

the output, the parameters of the estimator are optimized by 

using the training data. In the estimation phase, the trained 

estimator is used to estimate the quality levels of actual in-

spection images and create a “mill sheet” (i.e., an inspection 

certificate for steel materials). 

As for the proposed method, each training sample (f i , g i ) 

is subjected to the following data augmentation for sup-

pressing overfitting. The training samples are “extended.” 

Under the assumption that the value of the correct answer 

for the quality level (g i) given by the inspector includes var-

iation, multiple “extended correct-answer values” are 

generated and learned. This process prevents the estimator 

from being over-optimized for correct-answer values that 

may contain errors. Details of data expansion are described 

in Sections 3.1. The network model used for the estimator 

is described in detail in Section 3.2. 

3. Algorithms 

3.1. Data expansion based on variation distribu-

tion of correct-answer values 

The correct-answer values for the quality level given by 

the inspectors vary. This variation includes fluctuations in 

judgments in the sensory evaluation and erroneous training. 

As a practical matter, improving the quality of training data 

is difficult through the efforts of the inspectors alone. Ac-

cordingly, a mechanism for maintaining judgment 

performance, even if the quality of the training data deteri-

orates, is important. 

In consideration of the above-described issues, with the 

proposed method, the training data is subjected to “data 

expansion” on the basis of the distribution of the statistical 

variation of the correct-answer values. That is, as shown in 

Figure 3, multiple extended correct-answer values {g*
 i j } ( j 

= 1, … , NSi ) are generated according to variation distribu-

tion (d) from the correct-answer value gi for the quality 

level given by the inspector. These values are learned as an 

“extended training-sample group,” namely, {( f i , g*
 i j )}. Var-

ying the correct-answer values makes it possible to 

suppress excessive optimization for each training sample, 

 

 

Fig. 2: Quality-level-estimation system 

 
 

even if the trained correct-answer values are inaccurate to 

some extent, and generalization performance can be im-

proved.  

The key question is how to properly present the variabil-

ity distribution. As for the proposed method, it was decided 

to switch variation distribution d according to the value of 

the correct answer, gi. Specifically, as shown in Figure 4, 

the variation distribution for each correct-answer value is 

given as a probability distribution d ( g*
 i ; g i ), were the ex-

tended correct-answer value g*i is given as a variable, and 

the correct-answer value gi is given as a parameter. The var-

iation distribution is due to mistakes that are made by the 

inspector according to their on-site experience, and it can 

be said to be a kind of “domain knowledge.” For example, 

a discontinuous change in appearance occurs between qual-

ity levels 1.5 [Fig. 4(b)] and 2.0 [Fig. 4(c)], and judgment 

error spanning this change tends not to occur. 

If the training data is expanded on the basis of an errone-

ous variation distribution of correct-answer values, a large 

amount of false training data will be generated, and it may 

conversely reduce judgment performance. Appropriate data 

expansion is possible by explicitly reflecting domain 

knowledge in the variation distribution. 

3.2. Network model 

The network model used for the discriminator is shown 

in Figure 5. It is based on a network called “VGG,” which 

consists of a convolutional layer and a pooling layer [3]. In 

the first stage of the network, an inspection image is input, 

and features are extracted by the convolutional layer and 

the pooling layer. After the convolutional layer, the ex-

tracted features are subjected to normalization. 

Normalization prevents large fluctuations in the distribu-

tion of the input and suppresses overfitting. It has been 

reported that the commonly used batch normalization be-

comes unstable when batch size is small; accordingly, the 
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proposed method adopts a derivative of it, namely, group 

normalization [5] [6]. 

In the latter stages of the network, the extracted features 

are fully combined, and the quality level is output. To esti-

mate the quality level as a regression problem, a ReLU 

function is used as the activation function of the output layer. 

The ε-insensitive loss method was used to learn the network 

parameters [7]. This method is said to have suppress over-

fitting by preventing excessive minimization of the loss 

function. A loss function in the k-th mini-batch learning step 

is given as follows: 

 Loss𝑘 = ∑ ∑ max(|𝑔̂𝑖𝑗 − 𝑔𝑖𝑗
∗ | − 𝜀, 0)𝑗∈Ψ𝑖𝑘𝑖∈Φ𝑘

,    (1) 

where ĝi j is estimated quality level of extended training-

sample ( f i , g*
 i j ); ε is the insensitive error; Φk and Ψik are 

groups of ID numbers of training samples and extended 
 

 

Fig. 5: Network model of proposed estimator 

training-samples included in the k-th mini-batch. Every ex-

tended training-sample is trained in one epoch. 

4. Experimental results 

4.1. Experimental conditions 

The effectiveness of the proposed method was experi-

mentally verified as follows. As the input data used in the 

experiment, 362 inspection images of alloy tool steel, 

SKD11 (JIS standard G4404 [8]), were used. This image set 

included various quality levels for performance evaluation 

of the proposed method. The images were evaluated by 

four-fold cross-validation taking the ratio of training, vali-

dation, and testing samples as 6.0:1.5:2.5.  

To independently verify the effects of data expansion de-

scribed in Sections 3.1, a method that is similar to the 

proposed method but excludes data expansion (hereinafter, 

referred to as “comparative method”) was also evaluated.  

4.2. Estimation accuracy and learning curves 

The estimated quality levels for the testing data are 

shown as confusion matrices in Figure 6. The horizontal 

axis of each matrix is the value of quality level estimated 

by the judgment device, and the vertical axis is the taught 

correct-answer value. It can be concluded from comparing 

matrix (a) with matrix (b) that the more the samples are 

lined up diagonally, the better the estimation result gets. As 

for the comparative method, shown in Fig. 6(a), the sample 

distribution tends to spread around the diagonal center line, 

and estimation accuracy is 84%. On the contrary, as for the 

proposed method, shown in Fig. 6(b), the spread of the sam-

ple distribution is small, and estimation correct-answer rate 
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Fig. 3: Extension of training data 
 

 
Fig. 4: Distribution of variation of correct-answer values for quality level  
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is 90%. The correct-answer rate of the proposed method is 

significantly improved compared to that of the comparative 

method. It can thus be said that data expansion effectively 

improved performance. It is noteworthy that the correct-an-

swer rate is about 90% even in the case of visual judgment 

of the quality level by the inspector, so a correct-answer rate 

of 90% was taken as a guideline for the target performance 

required for practical use. The proposed method achieved a 

correct-answer rate equal to that of the inspector. 

The learning curve is shown in Figure 7. The horizontal 

axis shows “epoch” (i.e., number of learning times), and the 

vertical axis shows “loss-function value.” Since learning 

solves a minimization problem concerning this loss value, 

the loss value tends to decrease as the epoch progresses. As 

for the training data, it can be seen that the loss value in the 

case of the conventional method decreases sharply com-

pared to that in the case of the proposed method. On the 

contrary, as for the validation data, the loss value in the case 

of the proposed method is smaller than that in the case of 

the conventional method. It is clear from these results that 

in the case of the proposed method, overfitting of the train-

ing data observed in the case of the conventional method 

was suppressed, and high generalization performance in re-

gard to the validation data was obtained. 

Even though it is not in an overfitting state, in the case of 

general learning, the loss value of the training data used for 

optimization tends to be smaller than the loss value of the 

validation data. However, it is interesting that in the case of 

the proposed method, the loss value of the validation data 

is noticeably smaller. This is because the correct-answer 

values are scattered by the data expansion; however, since 

the magnitude of the loss value is slightly reversed, it is 

conceivable that the variation distribution of correct-answer 

values in the data expansion differs slightly from the actual 

distribution. Of course, it is difficult to give an accurate var-

iation distribution; even so, to further improve the judgment 

accuracy, it may be worth considering approaches such as 

changing the variation distribution of correct-answer values 

for each training sample according to the loss value.  

5. Concluding remarks 

In this study, an “automatic-quality-level-estimation sys-

tem” based on machine learning was proposed and 

evaluated experimentally. By data expansion, overfitting 

was suppressed, and judgment accuracy of 90% was 

achieved. This accuracy is considered to be equivalent to 

the performance of visual judgment by an inspector. 

As for future work, this system will be implemented at 

production sites with the aim of verifying its applicability. 

Implementing the system will eliminate the influence of 

personal differences between inspectors and reduce 

 
Fig. 6: Confusion matrix 

 

 
Fig. 7: Learning curves 

 

inspection costs. Moreover, applying the system to inspec-

tion of metals other than the alloy tool steel verified in the 

present study will be investigated, and the scope of automa-

tion based on this system will be expanded. 
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