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Abstract

One of the key requirements for enhanced au-
tonomous driving systems is accurate detection of the
objects from a wide range of view. Large-angle images
from a fisheye lens camera can be an effective solution
for automotive applications. However, it comes with
the cost of strong radial distortions. In particular, the
fisheye camera has a photographic effect of exaggerating
the size of objects in central regions of the image, while
making objects near the marginal area appear smaller.
Therefore, we propose the Expandable Spherical Projec-
tion that expands center or margin regions to produce
straight edges of de-warped objects with less unwanted
background in the bounding boxes. In addition to this,
we analyze the influence of multi-scale feature fusion in
a real-time object detector, which learns to extract more
meaningful information for small objects. We present
three different types of concatenated YOLOv3-SPP ar-
chitectures. Moreover, we demonstrate the effective-
ness of our proposed projection and feature-fusion us-
ing multiple fisheye lens datasets, which shows up to
4.7% AP improvement compared to fisheye images and
baseline model.

1 Introduction

For advanced driver-assistance systems(ADAS),
some of the important properties are to obtain com-
prehensive information about the environment and to
cover a sufficiently wide range of view. In order to
thoroughly understand the road scenes, it is necessary
to detect all the relevant surrounding objects. Cur-
rently, deep-learning based methods show the most
promising performance. This approach requires rela-
tively large computational resource, but with modern
hardware can easily be adapted to real-time detection.

Since most ADAS depend on visual information, a
considerable number of studies are being conducted on
the vision-based object detector. In a low-cost sensor
setup, 2D cameras with high field of view(FOV) can
effectively cover a large area around the vehicle and
ensure the safety of the autonomous driving. However,
this advantage comes at the cost of strong radial dis-
tortion. The resulting issues, such as curving and diag-
onal tilting of objects are increasingly severe towards

the edges of the image. Another notable feature of wide
FOV camera is that both the relative size and distance
are exaggerated. When comparing near and distant
objects, nearby objects appear much larger, while ob-
jects located far away appear much smaller than in the
general camera. Consequently, the already poor perfor-
mance of object detectors for small objects is further
degraded.

To solve these problems, SphereNet [1] suggests the
distortion-invariant neural network for the omnidirec-
tional images, adapting the sampling grid locations
of a convolutional kernel. Alternatively, a rotation-
invariant model, which predicts object orientations was
proposed by [2, 3]. However, these studies require
complex computations, hindering the real-time perfor-
mance required from one-stage object detectors.

Therefore, we propose a simple but effective
spherical-based projection. In order to compensate for
the weaknesses of the fisheye lens, our method sim-
ply expands the center or border areas of the image
without the necessity for multiple complicated opera-
tions. Moreover, we suggest three variants of multi-
scale feature-fusion method for the YOLOv3 [4] with
Spatial Pyramid Pooling [5] (YOLOv3-SPP). Each of
the variants incorporates a different feature concatena-
tion scheme. Short-skip Concatenation (SCat) merges
additional smaller scale feature maps from the neck
part of the detector, while Long-skip Concatenation
(LCat) draws the features from the backbone. Short-
Long-skip Concatenation (SLCat) fuses the feature
maps from both neck and backbone, effectively com-
bining the core features of SCat and LCat. We eval-
uate our solution with several public datasets, as well
as our new collection of images gathered with a 185◦

fisheye lens. The major contributions of this study are
noted as follows.

• Introduction of a new front-view fisheye dataset
consisting of 3K bounding box annotations.

• Proposal of simple but effective spherical projec-
tion on fisheye images,

• Analysis of feature fusion methods to reduce small
objects detection issues in real-time object detec-
tor
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2 Related Works

Fisheye Dataset for Urban Driving: Several au-
thors have considered the fisheye cameras for the
ego vehicles. Among them, some notable works are
classification and tracking of cars and pedestrians
using hybrid cameras [6], pedestrian detection us-
ing a combination of synthetic, and real images
from a 360◦ horizontal FOV camera [7], as well
as a multi-camera fisheye dataset for multi-task
with 7 different object categories by WoodScape
[8]. The deep-learning based models require large
volumes of training data, but generating such a
dataset is a very time-consuming task. There-
fore, some authors suggest leveraging synthetic
fisheye data generated from non-fisheye datasets
[9, 10, 11, 12, 13].

Multi-scale Feature Fusion for Small Objects:
MS COCO [14] defines small objects as having a
bounding-box size less than 322 pixels. Detecting
these small objects is crucial in many applications,
such as autonomous vehicle and unmanned aerial
vehicle(UAV). One of the representative methods
is multi-scale feature learning [15]. FPN [16]
has been used to improve the accuracy of small
object detection with the connection between
shallow and deep layers. Moreover, additional
concatenation of low-level features achieves higher
detection results on small objects in [17, 18]. We
make use of similar approach.

Ultra-Wide Angle Projection: Ultra-wide angle
lens can cover large areas with more than 100◦ hor-
izontal and vertical FOV, but results in consider-
able distortions. Consequently, several rendering
methods have been studied to minimize this. The
most representative projections are spherical and
cylindrical methods [3, 19]. Some works have suc-
cessfully demonstrated in 2D object detection in
spherical images with non-standard convolutions
[1, 2]. Using the cylindrical projection, several au-
thors estimate the depth from wide angle cameras
[19, 20]. In this paper, we use spherical-based pro-
jection since it can support high FOV of fisheye
lens in horizontal and vertical line and simply ren-
der the images. Spherical projection, also called as
equidistant cylindrical projection, maps the longi-
tude and latitude(θ, φ) are linearly to horizontal
and vertical coordinates(x, y) [21]: x = θ, y = φ

3 Proposed Method

3.1 Training Data

We use synthetic as well as real fisheye datasets. The
synthetic fisheye images are generated from CityScape

[22] and KITTI [23] datasets following the method in
ERFNet [13]. Additionally, we convert segmentation
annotations of CityScape to bounding boxes.

We collected our own fisheye camera images using
the Fujinon FE185C057HA-1 lens with 1.8mm focal
length and 185 ◦ field of view. Circular fisheye images
were captured with a 2/3 inch sensor. Since a front
view is the most important vision of the autonomous
driving, we installed the camera to the front window
of the vehicle as illustrated in Fig. 1. The data, con-
sisting of 21k road scenes in Daegu, South Korea, were
gathered during cloudy and drizzling weather. Bound-
ing boxes were manually annotated to 3k images. The
full set of annotated images will be completed in future
work.

Figure 1. Fisheye lens camera installed on a front
window of a test car

3.2 Expansion Weight for the Projection

Expandable Spherical projection is based on the
equidistant projection with an additional parameter w,
which is a non-negative expansion weight for increasing
the marginal or central area of the image. Instead of
using longitude θ, we propose θproposed which is mul-
tiplication of w and θ, as shown in Eq. 1. The weight
w consists of scale factor α for determining the expan-
sion, and β for balancing the effect of the edge areas,
as illustrated in Eq. 2.

θproposed = wθ (1)

w = α+ β
|θ|
θmax

(2)

Fisheye lens camera commonly captures a circular
image in a rectangular image sensor. Since the width-
to-height ratio is greater than 1, sides of the image
contain blank regions. Using this margin and general
location of large and small objects, we decide whether
to expand center or periphery area, manually setting
the value of α and β.
θ is a longitude from the spherical coordinate, and

θmax is half the field of view. When warping the image,



Figure 2. Different feature fusion strategies. (a) YOLOv3 with Spatial Pyramid Pooling module (b) Short-skip
Concatenation (c) Long-skip Concatenation (d) Short-Long-skip Concatenation

we set the center of the image as (0, 0) in the coordinate

system. Then, |θ|
θmax

represents whether a projected
point is placed near the middle or boundary regions.

When θ → 0, the location is near the center of the
image with w ∼= α. θ → θmax indicates the margin
area and w ∼= (α + β). The area of θ is stretched
more as w → 0, while w > 1 projects the specific area
narrower. In synthetic datasets where most of large
objects located near the middle part of the image, while
small objects frequently appears around the edge, α
and β is set as 1.2 and −0.3 respectively. In case of real
fisheye image, smaller objects are frequently around the
center area. Therefore we extend more on the center
area with α = 0.7 and β = 0.17. These parameters
guarantee the projected pixels within the bound of the
image.

3.3 Concatenated YOLOv3-SPP

We employ YOLOv3 architecture with one SPP
block, which consists of 4 parallel max-pooling layers
with 4 different kernel sizes. Since it can extract deep
features with increased receptive fields with a compa-
rable speed, we select YOLOv3-SPP for testing object
detection from fisheye and undistorted images.

To efficiently detect small objects for both synthetic
and real datasets, we suggest additional concatenation
modules to YOLOv3-SPP with three variants for ex-
tracting more meaningful information about small ob-
jects. Fig. 2a is a baseline model which predicts bound-
ing boxes at three scales. SCat(Fig. 2b) is for concate-
nating with short skip-connection on the neck part of
the object detector, following five convolutional layers
for each feature fusion module. LCat merges feature
maps with longer skip-connection with adding more
local features from the backbone at the bottom predic-
tion. Finally SLCat uses the fusion methods to neck
and backbone, combining core features of previous two
approaches. Details of the proposed architectures will
be in Fig.1 of the supplement material.

4 Experimental Results

4.1 Experiments on Fisheye-CityScape

Implementation details of training will be provided
in the supplemental material. In Table 4.1, the pro-
posed projection outperforms by more than 3% in AP
at SCat and LCat model, while the accuracy from ba-
sic spherical projection is similar as fisheye images. In
addition, both projections increase the results on small
objects as well.

Compared with feature fusion methods, SCat in-
creases the accuracy by 1.5% in expandable spheri-
cal images. For SLCat model, it consistently achieves
higher AP and APS than YOLOv3-SPP. In addition,
SLCat with our projection increases 1.9% in APS com-
pared to the baseline model with fisheye image dataset.
From our undistorted datasets, LCat shows less im-
provement in AP .

Table 1. Accuracy of different projections and
feature- fused models on synthetic Fisheye-
CityScape

Model AP AP50 AP75 APS APM APL
Fisheye Image

Baseline 22.4 42.5 20.7 5.6 28.0 58.7
SCat 22.4 42.3 20.3 5.9 29.0 57.6
LCat 21.0 39.7 19.9 4.7 26.0 61.1
SLCat 22.9 44.0 21.5 6.1 28.1 60.9

Spherical Projection
Baseline 21.2 40.0 18.1 6.2 28.2 56.8
SCat 22.9 42.9 20.5 6.2 30.8 63.0
LCat 22.4 41.7 21.0 6.2 30.0 62.3
SLCat 22.8 42.5 21.3 6.9 31.0 58.4

Expandable Spherical Projection
Baseline 24.3 45.5 22.3 6.9 31.0 66.9
SCat 25.8 47.2 23.9 7.3 34.3 58.5
LCat 24.0 45.0 21.7 6.5 31.6 57.2
SLCat 24.8 46.0 23.0 7.5 31.0 66.3



4.2 Experiments on Fisheye-KITTI

Compared to fisheye images with baseline model,
our proposed projection achieves the best performance
in AP , significantly improving the accuracy up to 4.7%.
On average, the detection result increased by 4.45% in
AP.

For the feature-fused models, SLCat shows better
accuracy in AP from projected images, and obtains
0.6% higher result in APS at the fisheye images. In
this KITTI dataset, our concatenation methods in
spherical-based projections show less effective in APS .

Table 2. Accuracy of different projections and
feature- fused models on synthetic Fisheye-
KITTI

Model AP AP50 AP75 APS APM APL
Fisheye Image without any projection

Baseline 56.9 85.7 63.8 48.2 66.6 73.9
SCat 57.2 86.6 64.2 49.1 66.8 74.7
LCat 57.0 86.4 63.1 48.7 66.4 76.9
SLCat 56.9 85.5 63.7 48.8 66.4 76.2

Spherical Projection
Baseline 59.1 86.5 66.2 46.5 64.6 75.2
SCat 58.8 86.9 66.5 47.3 64.5 75.7
LCat 58.8 86.4 65.1 44.5 65.0 76.9
SLCat 59.5 86.0 67.6 46.9 65.4 75.4

Expandable Spherical Projection
Baseline 61.3 88.3 70.7 48.2 65.7 76.4
SCat 61.5 88.8 69.6 48.2 66.0 76.3
LCat 61.4 88.9 70.0 47.8 65.6 75.6
SLCat 61.6 88.2 71.0 48.0 65.9 76.0

4.3 Experiments on Fisheye-Dongseongno

Table 3. Accuracy of different projections
and feature- fused models on real Fisheye-
Dongseongno

Model AP AP50 AP75 APS APM APL
Fisheye Image

Baseline 38.2 75.5 31.8 12.3 38.2 52.3
SCat 38.7 77.0 33.4 12.9 38.6 56.2
LCat 39.7 76.4 35.8 14.3 39.2 54.8
SLCat 40.1 78.6 35.7 13.5 39.6 56.1

Spherical Projection
Baseline 38.4 76.5 32.9 26.4 46.5 57.0
SCat 38.1 76.1 32.3 26.8 45.1 58.2
LCat 39.0 75.8 32.5 28.0 46.4 61.8
SLCat 38.2 76.9 32.4 27.3 44.8 57.8

Expandable Spherical Projection
Baseline 40.8 80.2 36.3 28.5 46.5 61.5
SCat 40.4 80.3 34.2 28.8 46.3 56.8
LCat 39.3 77.8 34.9 27.2 45.2 59.6
SLCat 40.8 79.6 37.6 31.0 45.6 56.6

From the experimental results in Table 4.3, the pro-
posed expandable projection shows higher detection re-
sult in AP from all models except LCat. At YOLOv3-
SPP model, our method achieves 2.6% improvement in
AP . Moreover, this projection successfully improves
APS up to 17.5% at SLCat model.

Compared with the feature concatenation methods,
SLCat obtains best performance on the expandable
spherical images, and achieves 1.9% higher AP than
the baseline on the fisheye image dataset. On the other
hand, AP in LCat decreased than the baseline from our
projection images, same as Fisheye-CityScape. We as-
sume merging the features with too low-level details
can hinder the network from correctly extracting rele-
vant features.

4.4 Ablation Experiments

Computational time of Projection: We obtain
same computational time from both projections.
In Table 4, time for generating rectification map
is presented as 0.256 second, and de-warping per
image takes 0.0155 second.

Inference time of the models: Table 5 shows the
inference time in Titan V GPU with the input size
512x512 and 640x640.

Table 4. Computational time [sec] of the expand-
able spherical method. Rectification map is gen-
erated only once and dewarping is implemented
per image.

Projection Rectification map Dewarping
Spherical 0.256 0.0155

Table 5. Inference time [sec] of the network by
input size in Titan V GPU

Model 512 640
Baseline 0.210 0.233

SCat 0.249 0.248
LCat 0.213 0.233
SLCat 0.234 0.237

5 Conclusion

We presented the effective spherical projection with
expansion weight on real-time object detection task.
Using two scale parameters, center or margin areas of
spherical images are expanded for reducing the distor-
tions. We also analyzed the effect of feature fusion
methods on small object detection. Finally, we provide
a raw fisheye dataset from one front view camera for
autonomous driving with 2D bounding box annotation
files.
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