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Abstract

In this paper, we propose a method to mea-
sure contributions of multiple datasets i.e. how
much a specific dataset contributes to improve ac-
curacy of the model. Our method is based on shap-
ley value, of which purpose is to measure contri-
bution by difference of the accuracy of the models.
Unlike previous method, our method first converts
the accuracy to data-scale measurements using fit-
ted log curve. We calculate contributions in a fair
way that each trials are evaluated not by its im-
provements of accuracy, but by the number of data
needed to make the improvements. Our method
can avoid overestimation of contributions in small
data cases. To evaluate the proposed method, we
trained models for Person Re-Identification tasks
with combinations of datasets, and calculated con-
tributions of each datasets. Results show that the
proposed metrics can effectively reduce the over-
estimations in small data cases, while the con-
tributions maintain good properties such as local
accuracy and additive law derived from shapley
value definition. We also proposed normalization
of shapley values in data-scale by its actual number
of instances, which indicates intrinsic importance
of a dataset per instance.

1 Introduction

Various visual recognition applications (e.g.
Object Detection and Person Re-Identification)
are studied in the field of both research and in-
dustry. Collecting training data is critical for de-
veloping models for each task. Even for same
the application, users often need to collect differ-
ent datasets for different target scenes in order
to learn scene-specific model. Combining multiple
datasets, user can get a model with better robust-
ness and accuracy, compared to the one trained
on a single dataset. In this case, measuring con-
tributions of each dataset, i.e. how much indi-
vidual datasets contribute to the improvements in
training, is important. With the measured con-
tributions, we can propose better data collection
policy for additional data, or acquire efficient data
subsets achieving higher accuracy with less data
given specified number of samples.

Given all training datasets combined, one way
to measure contribution of a training dataset w.r.t.
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the target scene is to train two models with and
without the specific dataset and take the differ-
ence. We call it as "last-one-mile gain." Intuition
behind this metrics is that the improvement of 1%
is more important when the dataset is larger. The
problem of this baseline metrics is that the same
values of difference may means different contribu-
tions. As a example, we assume that the specific
training dataset is already included in the base
datasets. In this case, the contribution (i.e. dif-
ference of accuracy) is likely to be small since the
actual training samples are identical. In this way,
the metrics highly depends on the presence of spe-
cific training samples, even though it could vary
in practice.

In this paper we propose a method to quanti-
tatively measure the contributions of dataset by
using Shapley values. We pointed out that cal-
culating Shapley values simply with model accu-
racies could overestimate the contribution in the
case of small data size. We applied accuracy-to-
size conversion based on log-curve.

Our contributions are:

1. We established a novel method to measure
contribution of each datasets with source
dataset fixed, in which contributions are cal-
culated in a fair way that each trials are eval-
uated not by its improvements of accuracy,
but by the number of data needed to make
the improvements.

2. We showed the effectiveness of our approach
through the experiments in the field of Person
Re-Identification task, with 5 public datasets.
We confirmed that our method can effec-
tively reduce the overestimations in small
data cases, while the contributions have good
properties such as local accuracy and additive
law derived from Shapley value definition.

2 Related Works

Shapley Value and its approximation: Shapley
Value (SV) [9], which is first introduced
in Game Theory, aims to fairly measure
contributions of each players in a quest.
Since original SV requires O(2N ) trials for
N datasets, several approximation meth-
ods such as Monte-Carlo sampling-based
approach[1] are proposed.

Shapley Value in Machine Learning: In machine
learning literature, local explanation to out-
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puts of machine learning model can be calcu-
lated as SV of a conditional expectation func-
tion of the model [8].

Model Accuracy and Data Size: Scaling laws be-
tween model accuracy and data is reported for
vision tasks [10] and natural language tasks
[5]. Accuracy (e.g. mAP) increases loga-
rithmically as data increases, or test loss de-
creases by e

1
n as data n increases.

Dataset Shapley: Several works focuses on mea-
suring contributions of data instances (or
group of instances) included in a dataset us-
ing SV[4, 2]. These works focused on effi-
cient approximation of SV calculation. On
the other hand, we try to revisit what SV re-
ally compares, and pointed out the problem of
comparing contributions in linear-scale accu-
racy measurement. We propose the method
to calculate SV in log-scale data measure-
ment (we refer it as "data-scale"), which is
not mentioned in previous works.

3 Method

In this paper, we propose a method to calculate
quantitative contributions of individual dataset to
its model accuracy, given combinations of all the
datasets and specific target scene.

Suppose we have multiple datasets D =
{Dtrain, Dtest} with train-sets denoted by i (i.e.
Dtrain = {Dtrain

i |i = 1, ..., N}) and test-sets de-
noted by j (i.e. Dtest = {Dtest

j |j = 1, ..., N}). P
corresponds to all possible combinations of train-
setsDtrain. Thus |P | = 2N . The standard Shapley
value ϕi of train-set Dtrain

i with test-set Dtest
j (i.e.

target scene) is calculated as:

ϕi(P, vj) :=∑
S⊆P\{i}

|S|!(|P | − |S| − 1)!

|P |!
(vj(S ∪ {i})− vj(S))

(1)

where vj(X) is a function which returns the re-
ward of the model trained on X and evaluated
on test-set j. Note that function vj(x) depends
on test set j, since contribution should depend on
test-set.

One simple choice for v is to take the accuracy
of the model. However, this approach has two
problems. First, there are huge accuracy gap be-
tween models with and without source-set, which
is train-set of test-set j (=target-scene), as shown
in figure 1.

Second, a model with smaller data tends to
have larger improvements given same amount of
additional data (See figure 2 and 3). Taking the
difference of accuracy as measurement for con-
tribution, Shapley value would not differentiate
these differences. In this case, 1% improvements
at small data gets same contribution as the one at
large data, which is fundamentally different.

As for the first problem, we fix the presence
of source-set in each experiment. We defined two

Figure 1: Plots of accuracy and # samples. Each
point represents a evaluation result of a model
trained on all possible combinations of 6 train-sets
described in section 4, and evaluated on Market-
1501. Presence of source-set (i.e. Market-1501
train-set) makes huge performance gap.

groups: the first group includes models trained
with the source-set. The other group includes
models trained without the source-set. With P ′

which corresponds to all possible combinations of
Dtrain\{j} and S ⊆ P ′, the training dataset of the
first group is denoted as T+ = S ∪ {j}, and the
training dataset of the second group is denoted as
T− = S

Second, we propose to measure contributions
in data-scale. As reported in [10], the relation-
ship between accuracy and data size can be de-
scribed by log-curve. We convert the accuracy to
data scale measurement by following procedure.
We have M(= |P ′|) results {sjk, a

j
k}(k = 1, ...M),

where sjk is total number of images in the train-sets
and ajk is accuracy of the trained model evaluated
on test-set j.Based on the empirical results about
scaling laws of model [2, 10], we describe the re-
lationship between accuracy a and the number of
training samples s of individual model as:

a = fj(s) = αj(log s− log βj), (2)

where αj and βj are coefficients for the log curve
to optimize. Note that this corresponds to linear
line of log scale s. Given training results {ajk, s

j
k},

we fit equation 2 to the data using least-square
method.

Using fitted fj , Shapley value of train-set i,
given test-set j, and with data-scale measurement
can be calculated as:
ψi(P

′, vj) :=∑
S⊆P ′\{i}

|S|!(|P ′| − |S| − 1)!

|P ′|!(
f−1
j (vj(S ∪ {i}))− f−1

j (vj(S))
) (3)

4 Experimental Results

We evaluated the effectiveness of the pro-
posed method using datasets of Person Re-
Identification(Re-ID) task, which aims to find



Table 1: Number of training images for each
datasets. (·) denotes abbreviated characters used
in other experiments.

Dataset Names # Images # IDs

Market1501 (m) 12936 751
GRID (g) 250 125
PRID (p) 200 100
SenseReID (s) 4428 1718
CUHK02 (c) 6308 1577

(a) linear-scale plots (b) log-scale plots

Figure 2: Evaluation results of OSNet on mar-
ket1501. Accuracies and size for all possible com-
binations of datasets are plotted with linear-scale
(left) and data-scale(log-scale) (right).

query person from other gallery cameras. We
trained models on all combinations of datasets
and calculated the contributions of each datasets.
Note that our methodology is applicable to any
other tasks as long as scaling laws for model holds.
[10] and [5] reported scaling law for classification
task. Re-ID task can be regarded as classification
task given datasets to evaluate. In this section,
we showed that: (i) the data is effectively mod-
eled by the scaling law (i.e. log-curve), on which
Shapley values of each dataset can be calculated
(See section 4.1). and (ii) the calculated Shapley
values can be normalized in several way, providing
different insights about training results.

4.1 Shapley Values with Data-scale Mea-
surement.

We used 5 datasets for evaluation: Market1501
[12], GRID [7], prid2011 [3], CUHK02 [6], and
SenseReID [11]. We used OSNet [14] as models
to measure accuracies. Table 1 shows overview of
each datasets. Our implementation is based on
torchreid [13].

At each experiment, we fix the source-set (i.e.
train-set which is from same dataset as test-set)
included or not included in the train-sets. Next,
we trained 2N (N = 5) models for all possible
subsets of datasets. Contributions are calculated
using these results.

We defined two baselines. One is last-one-mile
gain described in section 3. It indicates the con-
tribution of the specific train-set, given all other
train-sets included. The other is Shapley value of
datasets, which calculates contributions by the dif-
ference of accuracy, whereas our method converts
the accuracy to data-scale measurement.

Table 2 summarizes the comparison of the prop-

(a) linear-scale plots (b) log-scale plots

Figure 3: Plots of (|S|,∆vji), where ∆vji =
vj(S)−vj(S/{i}) in (a), and ∆vji = f−1(vj(S))−
f−1(vj(S/{i})) in (b). Models are evaluated on
Market-1501 and source-set is not included in the
train-sets. From (a), we can see that there are
strong negative correlation between the number of
images and the amount improvements given train-
sets. As shown in (b), accuracy-to-data-scale con-
version reduces this correlation. Best viewed in
color.

Table 2: Comparison of contribution metrics.

Properties Last-
one-
mile
gain

SV in
linear-
scale

SV in
data-
scale

local accuracy? No Yes Yes
additive law? No Yes Yes

data-size aware? No No Yes
# trainings N + 1 2N 2N

erties of methods. Shapley-based approaches have
good properties such as local accuracy and addi-
tive law, derived from definition of SV. Local accu-
racy is a property that summation of contributions
corresponds to the function value (i.e. accuracy of
the model). Additive law is the property that if c1
and c2 are contributions of S1 and S2, contribution
of S1 + S2 is c1 + c2. Only the proposed method
takes data size into considerations of contribution.

Note that in this paper we calculate exact Shap-
ley value to evaluate the proposed methodology.
Approximation such as Monte-Carlo sampling-
based method [1] can be applied in practice.

Figure 4 shows the visualization of Shapley val-
ues calculated on Market-1501. As shown in fig-
ure 3(a), simply taking difference of accuracy leads
to overestimation of results with small training
samples. Figure 2(b) shows that the relationship
between the accuracies and the data size can be
described by log-curve.

Table 3 shows the confusion matrix of Shapley
values. Each column is a result for specific test-set
denoted in the first row.

Table 4 shows the calculated contributions by
3 different methods last-one-mile gain normalized
to data-scale, SV in linear scale, and SV in data-



Figure 4: Visualizations of Shapley values. Red
arrow shows positive contributions and blue arrow
shows negative contributions. Sum of all Shapley
values corresponds to the approximate dataset size
of the model trained on all datasets.

Table 3: Confusion matrix of SV in data-scale.
Column of "train-set" represents train-set to cal-
culate contributions. Column of "test-set" shows
data-scale Shapley values for each test-set. Last
column and row show summation of the row
and column respectively. Note that we only use
SenseReID for training.

train-
set

test-set sum

m g p c

m 0 26000 388400 19900 434300
g 1000 0 272000 4600 277700
p 400 15700 0 2600 18700
s 6900 -19800 283700 6400 277200
c 10800 1500 359500 0 371900

base 400 800 100 300 -
sum 19600 24200 1303800 33700 -

scale.

4.2 Comparison using Normalized Shapley
Values

As described in section 4.1, accuracy can be
converted to its dataset size with logarithmical
relationship. By converting accuracy-scale val-
ues to data-scale values, we can fairly compare
dataset contributions as amount of essential data
size added. By the definition of SV, sum of dataset
contributions given specific test-set corresponds to
the actual data size. We introduce several ways to
normalize the contributions, and how to interpret
the values.

Average Importance per Instance: Table 5 shows
average importance per instance, which is
contributions of datasets given same amount
of data. As shown in table 5, some datasets
have large positive contributions per instance
(e.g. (c)uhk02)), whereas some dataset have
zero or large negative contribution per in-
stance (e.g. (g)rid and (p)rid).

5 Conclusion

In this paper we proposed we propose a method
to measure contributions of datasets using Shapley

Table 4: Contributions using three different ap-
proaches (i.e. Last-one-mile gain normalized to
data-scale, SV in linear scale, and SV in data-
scale). Target-set is Market-1501 and all mod-
els are trained without source-set. LOM exagger-
ated the single case results, whereas SV in lin-
ear scales are inappropriately smoothed since ev-
ery datasets provides larger contributions when S
is small. The proposed method provides reason-
able results in between the former two, with good
properties mentioned in table 2.

source Last-
one-
mile
gain

SV in
linear-
scale

SV in
data-
scale

g 0.60 0.35 1.01
p 0.20 -0.05 0.42
s 3.30 5.62 6.64
c 7.60 9.08 10.47

base 0.00 3.90 0.36

Table 5: Per-instance contributions of each
datasets. The proposed SV in data-scale is nor-
malized by their actual data size. Some datasets
have large positive contributions per-instance (e.g.
(c)uhk02)), whereas some dataset have large neg-
ative contribution per-instance (e.g. (p)rid).

SV in data-scale # Images SV / # Images
g 1047 250 4.19
p 433 200 2.16
s 6874 4428 1.55
c 10836 6308 1.72

values. Based on the empirical results about scal-
ing law of models, we learn a function to convert
accuracy-scale values to data-scale ones. With this
conversion, contributions are calculated in a fair
way that each trial are evaluated not by its im-
provements of accuracy, but by the number of data
needed to make the improvements. We showed the
effectiveness of our method by the experiments
on Person Re-Identification task, using 5 public
datasets.
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