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Abstract
Existing floor plan retrieval methods match residential floor
plans based on room function and adjacency, ignoring the
shape of the interior rooms. Inspired by shape grammars,
we incorporate interior layout into the similarity metric us-
ing a tree structure that represents both the layout hierar-
chy and room shapes of the floor plan. We create parse
trees from floor plans and evaluate their similarity using an
appropriately defined tree edit distance. We evaluate the
method on a public dataset of 11,250 vector graphic rep-
resentations of Japanese homes. A user study shows that
our method retrieves layouts preferential to those obtained
using the exterior outline or room adjacency matrix.

1 Introduction
Floor plan retrieval engines identify recommendations for
home buyers from consumer databases or act as a means
for architectural inspiration. The task is frequently framed
as a graph matching problem due to the innate represen-
tation of floor plans as graphs and the effectiveness of
graphs as a pattern recognition tool [2]. Graphs represent-
ing features of the floor plan topology or room function
have been compared using a variety of graph matching tech-
niques [1, 6, 9, 15, 16, 17, 18, 19, 20, 25, 26]. However,
many existing techniques do not explicitly account for the
shape of the layout, i.e. how the rooms are arranged spa-
tially, which is desirable for finding similar residences in
databases. Incorporating features such as the room foot-
print [1] gives consideration to the shape of the floor plan
exterior, but it does not weight shapes in the interior room
layout. A challenge in incorporating the interior layout is
that no clear metric permits its comparison. Many metrics
for generic shape matching have been proposed [24]. How-
ever, homes exhibit a hierarchy of functional zones, which
are collections of single rooms [9]. This hierarchical na-
ture is not accounted for when applying a shape similarity
metric.
Inspired by shape grammars [21, 30], we approach the floor
plan retrieval problem by representing floor plans as trees
that can be efficiently compared using the tree edit dis-
tance [22]. This distance is the minimum-cost sequence of
node edit operations to transform one tree into another, and
it can be computed in polynomial time using the Zhang-
Shasha algorithm [29]. We developed a cost function for
tree edits that incorporates the layout hierarchy. Trees are
constructed from vector graphic representations of floor
plans, which can be obtained using the method in [7, 10].

Figure 1: Floor plan matching. We define a distance be-
tween floor plan images based on the room layout. Instead
of working with the input (top) or segmented images (mid-
dle), we use a graph representation (bottom), where edges
represent walls and nodes represent intersections. Nodes
are colored by degree.

The retrieval method is shape-based and does not consider
the functionality of different rooms. Methods that consider
different room functionalities could be incorporated as a fil-
ter or as an additional weighted cost in the layout similarity.
We applied our method to 11,250 Japanese homes (see Fig-
ure 1 for examples) selected from the dataset made available
by Liu et al. [10]. The novelty of this work is that we incor-
porate shape hierarchy into shape similarity using a tree edit
distance matching metric. We thus provide a solution for
floor plan retrieval by introducing a shape matching method
for hierarchical structures.

2 Prior Work
Existing approaches to floor plan matching compare func-
tionality and room adjacency and do not explicitly account
for room shape in the similarity metric. Spectral graph
matching was applied to floor plan matching in [6, 17].
Schaffranek compared office layouts using room function
and a weighted adjacency matrix dependent on the physi-
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Rectangles Required to Parameterize Children

Valid Applications of the Proposed Split Grammar

Figure 2: Split grammar for single node. Each row shows the
split for shapes with a different number of parent rectangles.
Blue and green colors show areas covered by child nodes.

cal distance between rooms [17]. Hanna compared office
layouts but used visibility and boundary features [6]. Lan-
genhan et al. created ‘semantic fingerprints’ by constructing
a tree that models the hierarchy of a floor plan [9]. The tree
hierarchy represents either rooms, zones, units, or levels.
Nodes were labeled with room function and the presence
of direct connections, but no shape information is included.
Different exact or inexact graph matching techniques were
used to query the database [16]. In [26], floor plans are rep-
resented as graphs and compared using subgraph embed-
dings, where nodes contain geometric information such as
length and height, shape descriptors, and room types, and
are compared using subgraph embeddings. While graphs
preserve all room connections and subgraph embeddings
encode some higher level shape information, this method
discards the shape of each room. Tree matching is compu-
tationally efficient and high level shape information is pre-
served via the parent-child relationship.

2.1 Shape Grammar Representation
Shape grammars [21, 27] follow a set of predefined rules
to generate complex shapes and styles including: house
layouts [8, 12], Queen Anne-style buildings [5], and fa-
cades [3, 11, 14, 27]. Since shape grammars can express
many kinds of shapes, we hypothesized that they would
form a good representation for floor plan matching based on
interior layout. We opted to represent floor plans as a split
grammar [27], where each application of the split grammar
rule divides the parent shape in two. Split grammars natu-
rally lead to a binary tree representation of floor plans.

3 Floor Plans as Parse Trees
The steps in our floor plan retrieval process are: (a) com-
bine adjacent rooms into parse tree (Section 3.1), (b) assign
features (Section 3.2), and (c) compare parse trees (Sec-
tion 3.3). The parse tree is computed from the planar graph
representation of the floor plan which form an undirected
graph with corners as nodes and walls as edges.

Figure 3: Floor plan parse trees obtained using greedy area
division. Rooms are plotted with different colors. The rooms
after the split at the root have similar area and all splits
respect room adjacency.

3.1 Floor Plan Parsing

The goal is to convert a floor plan to a binary parse tree
that represent steps of a split grammar. Since floor plans are
not well represented by independent splits along coordinate
axes, we employ a non-binary split grammar [27]. Binary
split grammars as presented by Teboul et al. [23] are only
capable of dividing shapes into rectangles. A non-binary
split grammar permits representation of a more diverse set
of room shapes, since shapes after a split can be any pair of
basic shapes from the vocabulary. Our parsing problem re-
mains tractable since the floor plan images to be parsed are
binary images that are considerably more simple compared
to the RGB facade images studied in [23].
We define the split grammar as follows. The basic shapes
are in the set B of shapes formed from the union of three
rectangles {R1, R2, R3}. The rectangles are connected and
axis-aligned. Basic shapes have no holes, and are labeled
as terminal or non-terminal. At each split, a non-terminal
shape is selected and the split rule is applied. A shape is
terminal if it contains exactly one room. Examples of valid
splits are shown in Figure 2. We found the shape repre-
sentation to be a reasonable trade-off in terms of accuracy
and simplicity, where the majority of shapes in the dataset
are accurately captured, while curved shapes lead to an ap-
proximation error. The N leaves of the tree represent single
rooms. Internal nodes are combinations of adjacent single
rooms and have a shape that is the union of its children.
Conversely, the two children of an internal node are the re-
sult of an applied split. The root node contains all rooms
and its shape is the footprint of the floor plan. Nodes are
labeled with a feature vector discussed in Section 3.2.
We build the parse tree using a greedy, bottom-up algo-
rithm to obtain near equal area splits close to the root node
while respecting room adjacency. The tree parsing pro-
cess begins with leaf nodes which are initially disjoint. At
each iteration, the area of all remaining pairs of disjoint
trees (room combinations) that satisfy room adjacency are
summed. The pair with the smallest sum-area is combined.
This is repeated until all rooms have been combined. Parse
trees obtained using this method are shown in Figure 3.
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Figure 4: Examples of room shapes inscribed using rectan-
gles. Dotted outlines represent rectangles used to calculate
the affine transforms. A non-rectilinear shape is not com-
pletely parameterized by three rectangles.

Table 1: Features used in tree edit distance cost.

Feature Dim
Width and height of R1 2
Affine transformations (sx, sy, tx, ty) that map R1 → R2 and R1 → R3 8
Area of R2 ∩R1 and R3 ∩R1 ∪R2 2
Area not covered by R1 ∪R2 ∪R3 1

3.2 Labeling
Each tree node is labeled with a feature vector obtained
from simplifying the room shape. Rooms are simplified to
a shape from B by inscribing up to three overlapping rect-
angles in the room boundary. R1 is assigned the largest
inscribed rectangle in the room boundary. The largest in-
scribed rectangle can be solved for a generic polygon by
rendering the room footprint and representing it as a Carte-
sian tree [13]. R2 and R3 are inscribed in the remaining
area, and extended to maximize overlap with R1 while re-
maining within the polygon bounds. Examples of rectan-
gles inscribed using this method are shown in Figure 4.
R1, R2, and R3 are used to obtain a translation-invariant
feature vector v with 13 values described in Table 1.

3.3 Matching
We use the tree edit distance [22] as a similarity metric be-
tween query and candidate parse trees. To compute tree
edit distance, the edit operations (relabel, add, delete) are
assigned a cost. The trees must also be ordered for tree
edit distance to have polynomial complexity [29, 28]. Tree
nodes are ordered first by the number of children, then by
the room area if the number of children are equal. The cost
to relabel node A to B is defined as:

C(A,B) = ||area(A) vA − area(B) vB ||1,

where, area(·) is the areas covered by the parameterization
of the shape at the node, and || ∗ ||1 is the mean absolute
difference. The edit cost is symmetrical and satisfies the
triangle inequality [29]. For deletion and insertion, vB = ~0
and area(B) = 0. Intuitively, || ∗ ||1 penalizes differing
shapes and the number of inscribed rectangles. The area
factors make shapes closer to the root and overall footprint
more costly to modify due to their greater area.

4 Experiments
Dataset. 11,250 floorplans were selected from the dataset
by Liu et al. The cost function and feature vector was de-
signed to provide good matches on 1250 floor plans. The
remaining 10,000 were used as a test set for the prefer-
ence study. The study was conducted using an online
form, which participants completed independently. Method
names were replaced by letters and the order randomized to
avoid bias. Example floor plan retrievals shown in Section 5
are sampled i.i.d. from the set of 1250 floor plans.

Baseline methods. The tree retrieval method was com-
pared to footprint matching [1] and graph matching using
the Laplacians of the room adjacency matrix as in [17].
For footprint matching, the distance of the exterior from the
centroid of each floor plan was calculated in pixels with rays
drawn at increments of 5◦. The matching floor plan mini-
mizes the Euclidean distance between the query and candi-
date feature vector. For graph matching, the room layout is
represented as an undirected weighted graph. Edge weights
are the reciprocal of the distance between room centroids if
rooms are adjacent and zero otherwise. The l2-distance of
the spectrum of the normalized Laplacian N was used as
the similarity metric [17]. The spectrum is zero padded to
the maximum room count to account for different numbers
of rooms.

4.1 Layout Preference Study

Twenty-five random floor plans were chosen from the test
set. Floor plans that appeared to have missing rooms were
removed from the test. Rooms were rendered with a sin-
gle color, ignoring the room function in order to emphasize
the internal shape. For each query, the top four matches ob-
tained using each matching method were presented simulta-
neously, similar to Figure 5 (with labels removed). Thirty-
six participants were asked to select which group was most
similar to the query based on layout, room shape and rela-
tive sizes of rooms. They were asked to consider the query
layout under rotation and reflection. A ‘no preference’ op-
tion was provided for the case that the participant felt no
groups were similar to the query.

5 Results
5.1 Comparison of Matching Methods

Figure 5 shows results for query plans from the develop-
ment set where floor plans with identical footprints exist
but have vastly different interior layouts. Spectral match-
ing finds layouts with similar room clustering, but does not
respect the footprint of the floor plan. The spectral match-
ing approach is preferential towards floor plans with the
same number of rooms. In Figure 5(a), the shape match-
ing preserves the division of the large room and balcony
combined with an opposite half with a simple layout and
few rooms. Since many plans with the query footprint ex-
ist, the footprint match chooses floor plans with a different
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Figure 5: Floor plan matches with identical footprints.

interior layout. In Figure 5(b), there is a distinctive ‘T’ fea-
ture (indicated by blue arrows) that appears in all matches
obtained by the proposed shape-based method. In the foot-
print match, this feature incidentally appears as indicated
by the orange arrow. Figure 6 shows matches obtained for
floor plans without identical footprints. The shape match-
ing method discovers floor plans with similar footprints that
better adhere to the division and complexity of the query.

5.2 Preference Study on Test Set
Parsing floor plans in the test set took approximately 10
hours, but only needs to be calculated once. We computed
the tree edit distance against 10,000 candidates, and the av-
erage response for each category, and responses for each
of the twenty-five cases are shown in Figure 7. The most
preferred method of the average participant was the shape-
based method (53% ± 11%). Inter-user variability was rel-
atively high with shape-based preference ranging from a
minimum of 16% to a maximum of 76%. Users with less
preference for the shape-based method were more atten-
tive to footprint and clustering rather than individual room
shape. Cases where the spectral method was selected the
majority of the time had simple footprints and small num-
bers of rooms.

6 Discussion
We have presented a data structure that permits comparison
of floor plans according to their shape. It performs best at
comparing floor plans with similar or identical footprints.
Some room shapes could not be represented by our shape
simplification method. An approach to addressing the diver-
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Figure 6: Floor plan matches without identical footprints.
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Figure 7: User study results. The average participant pre-
ferred the proposed shape-based method compared to meth-
ods based on the foot print or room adjacency matrix. Error
bars indicate standard deviation across participants.

sity of room shapes would be to apply a different method for
computing shape similarity and replace the mean absolute
difference in the edit distance. Options include: parameter-
izing the shape with triangles [4], using a radius feature akin
to the footprint calculation, or applying other shape similar-
ity methods [24]. Room function adjacency was ignored in
our similarity metric, but could be incorporated as an addi-
tional weighted term in the similarity metric [16].

7 Conclusion
We have presented a method for incorporating layout shape
in the floor plan retrieval process. This was achieved by
parsing floor plans into a tree structure that represents a split
grammar and comparing the parse trees with a shape-based
tree edit distance. A preference survey indicated that our
retrieval method identifies layouts with higher similarity to
the query than layouts obtained using previously proposed
retrieval methods.
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