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Abstract

Deep hashing models have been proposed as an ef-
ficient method for large-scale similarity search. How-
ever, most existing deep hashing methods only utilize
fine-level labels for training while ignoring the natural
semantic hierarchy structure. This paper presents an
effective method that preserves the classwise similar-
ity of full-level semantic hierarchy for large-scale im-
age retrieval. Experiments on two benchmark datasets
show that our method helps improve the fine-level re-
trieval performance. Moreover, with the help of the
semantic hierarchy, it can produce significantly better
binary codes for hierarchical retrieval, which indicates
its potential of providing more user-desired retrieval re-
sults. The codes are available at https: // github.
com/ mzhang367/ hpdh. git .

1 Introduction

The past few years have witnessed a significant im-
provement in the quality of content-based image re-
trieval (CBIR) [1, 2, 3] due to the emergence of deep
learning. With the explosive growth of online visual
data, there is an urgent need to develop more efficient
deep learning models. Recently, deep hashing has been
proposed as a promising method for large-scale image
retrieval. It directly projects images to binary codes
for approximate nearest neighbor search, which con-
siderably reduces the storage and computation cost.

In the real world, the classification and description
of things often follow a hierarchy structure. One typ-
ical example is taxonomy, as shown in Fig. 1. How-
ever, most existing deep hashing models [4, 5, 6, 7] only
utilize single-level semantic labels for training. Their
training processes are either supervised with the fine-
level labels or similar/dissimilar pairs of labels that are
converted from fine-level labels. With such supervision,
the deep hashing model can only learn partly class

Figure 1: A tree visualization of three-level hierarchy
comprising six kinds of mammals. Note that we refer
the Species level to fine-level and the Order level to the
highest level, which is analogous to the leaf node and
the root node in the hierarchy tree, respectively.

similarity within the lowest hierarchy while the class
similarity between the upper-level labels is not well
preserved as the semantic hierarchy structure. Conse-
quently, it hinders the deep hashing model from learn-
ing a better semantic hashing space for hierarchical
retrieval. Taking Fig. 1 as an example. Without hi-
erarchy, bears’ feature embeddings are not necessarily
closer to giant pandas belonging to the same super-
class (Ursidae) than that to other species belonging to
different super-class.

In this work, we propose a novel deep hash-
ing method called Hierarchy Preserving Deep Hash-
ing (HPDH). Fig. 2 illustrates a comparison of
the fine-level labels-based Deep Class-Wise Hashing
(DCWH) [10] and the proposed method. It is clear
that the hashing codes generated by our method fall
into an obvious hierarchy structure. The main contri-
bution of HPDH can be summarized in three folds:

• We propose a hierarchical loss function that di-
rectly uses class labels for hashing learning. The
proposed loss function preserves intra-class com-
pactness and inter-class separability in each hier-
archy level.

• To better leverage the label information’s hier-
archy structure, we design a simple yet efficient
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Figure 2: Visualization of learned hashing codes using
t-SNE [8]. The samples in CIFAR-100 [9] are labeled
with both fine-level and coarse-level labels. We illus-
trate samples by their coarse-level labels. Each color
indicates one coarse-level class. Note each coarse-level
class contains exactly five fine-level classes.

scheme to update the class centers per level in a
periodical and recursive manner.

• Experiments on two benchmark datasets: CIFAR-
100 and NABirds show that our method consis-
tently outperforms other state-of-the-art baselines
with a distinct margin on both general fine-level
retrieval and hierarchical retrieval.

2 Related Works

Deep hashing methods [6, 10, 11, 12] have shown
their great superiority to traditional hashing meth-
ods in image retrieval with the advantages of simul-
taneously feature representations learning and hashing
learning. Most existing deep hashing methods adopt
the similar/dissimilar pairs of samples for training that
are constructed from class labels. Following this di-
rection, DPSH [4] firstly utilizes the pairwise label in-
formation to train an end-to-end deep hashing model.
HashNet [13] defines a weighted maximum likelihood
to balance the similar and dissimilar pairs within the
dataset. To make the most of the semantic information,
recently, several works propose directly relying on class
labels for similarity supervision. SSDH [14] introduces
a softmax classifier to unify the classification and re-
trieval in a single learning process. DCWH [10] designs
a normalized Gaussian-based loss, clustering intra-class
samples to the corresponding class center.

The aforementioned deep hashing methods propose
different learning metrics to conduct similarity learn-
ing. However, most of them cannot handle the multi-
level semantic labels. Meanwhile, there appear more
and more hierarchical labeled datasets. For example,
ImageNet [15] is a large-scale database organized by
WordNet [16] hierarchy, and each node of the hierarchy
is illustrated by hundreds, even thousands of images.
Therefore, just considering the similarity within a sin-
gle level of labels inevitably leads to a loss of the rich
semantic information stored in the hierarchical data.

It has been verified that providing the hierarchy
information relating to semantic labels during train-
ing can boost image retrieval performance. In [17],
researchers prove that the image classification perfor-
mance can be improved by combining the coarse and
fine-level labels. A similar idea is shared in [18], where
a hierarchical training strategy is applied to handle the
face recognition task. Recently, SHDH [19] is the first
deep hashing work that tackles the hierarchy similarity
by weighting the Hamming distance at each level. How-
ever, SHDH applies a pairwise labels relation, which is
inferior to class-wise labels-based methods [14, 10, 20].
Motivated by these issues, we introduce the hierarchy
-preserving method HPDH based on the class-wise la-
bel information in each hierarchy, suitable for learning
more discriminative binary codes.

3 Proposed Approach

Suppose a hierarchical labeled dataset, and each im-
age xi is annotated with a K-level semantic label, de-
noted with a K-dimensional vector yi. The label vector
consists of the class labels from the lowest hierarchy
level to the highest hierarchy level in a tree-like struc-
ture. For example, a dolphin image is labeled with
y = {Dolphin, Aquatic Mammals} in a two-level hier-
archy. We aim to apply deep convolutional neural net-
work (CNN) with learnable parameters Θ to project
images to a particular Hamming space. In this space,
for any hierarchy level, the Hamming distance between
intra-class samples to the corresponding class center is
smaller than that to other class centers.

We propose a multi-level normalized Gaussian
model to keep a hierarchical semantic structure in
the Hamming space. Denote the hashing output as
ri = f(xi,Θ) and ri ∈ {−1, 1}L, where L is the bi-
nary code length. The proposed objective function is
formulated as following:

min
Θ,M
L = −

N∑
i=1

K∑
k=1

log
exp{− 1

2σ2
k
d(ri, µkyik)}∑Ck

j=1 exp{− 1
2σ2

k
d(ri, µkj)}

(1)

s.t. ri = f(xi,Θ) ∈ {−1, 1}L, µkj ∈ {−1, 1}L

where M = {µk}Kk=1 and µk = {µkj}Ck
j=1. Here, µkj

represents the j-th class centers in the k-th level of the
semantic hierarchy, Ck is the total number of classes
at the k-th level and σk is a parameter to control the
intra-class variance at the level k. d(·, ·) is the Ham-
ming distance function. To solve this discrete opti-
mization problem, we follow the optimization strategy
in DCWH [10]. We first relax the ri to [−α, α] where α
is empirically set to 1.1 in [10]. Then, the original dis-
tance d(·, ·) can be replaced with a Euclidean distance.



And the loss function becomes the following:

L =−
N∑
i=1

K∑
k=1

log
exp{− 1

2σ2
k
‖ri − µkyik‖}∑Ck

j=1 exp{− 1
2σ2

k
‖ri − µkj‖}

+ η1{ReLU(−α− rn) +ReLU(rn − α)}

(2)

where η1 is the regularization weight. ReLU is the
rectified linear unit defined as ReLU(x) = max(0, x).
The above loss function is differentiable and the clas-
sical back-propagation can be applied to optimize the
network parameters Θ.

We update the fine-level class centers {µ1j} with the
training data as following:

µ1j =
1

N1j

N1j∑
n=1

f(xn,Θ) (3)

where N1j is the number of images that belong to the
j-th class in the lowest hierarchy level in the whole
dataset. Based on {µ1j}, the upper-level class centers
{µkj}Kk=2 can be calculated from their own child level
class centers as following:

µkj =
1

Ckj

Ckj∑
c=1

µ(k−1),c (4)

where Ckj is the number of level-(k-1) classes with the
same parent class, i.e., j-th class at level k. By such
a recursive calculation, not only can we save the com-
putation cost but also eliminate the influence of imbal-
anced training data between classes. The hyper param-
eters {σ2

k} are chosen to satisfy the criterion σ2
k−1 ≤ σ2

k
so that the variances within parent classes are larger
than the child ones. Finally, we introduce a quantiza-
tion term following [6] to encourage the relaxed real-
valued hashing outputs to be binary. The finalized ob-
jective function is shown as:

min
Θ,M
J = L+ η2

N∑
i=1

‖bi − ri‖22 (5)

where bi = sgn(ri) and η2 is a hyper parameter con-
trolling the weight of the quantization term. The whole
training procedure is summarized in Algorithm 1.

4 Experiments

4.1 Datasets

We conduct experiments on two hierarchical
datasets including CIFAR-100 [9] and NABirds [21].
CIFAR-100 is a dataset collecting 60, 000 tinny im-
ages with a two-level semantic hierarchy, i.e., K = 2.
Specifically, the total 100 fine-level classes are grouped

Algorithm 1 The training procedure of HPDH

Initialize CNN parameters Θ, class centers M
repeat

1. Compute features ri = f(xi,Θ);
2. Update fine-level centers {µ1j} by Eq. (3);
3. Update upper level centers by Eq. (4);
4. Compute the loss J according to Eq. (5);
5. Calculate derivatives of J w.r.t. ri and update
Θ by back propagation

until Converge

into 20 coarse categories, and each coarse category con-
tains exactly 5 fine-level classes. We follow the official
split with 50, 000 images for training and 10, 000 im-
ages for testing. NABirds [21] dataset comprises more
than 48, 000 images from 555 visual categories of North
America birds species. These categories are organized
taxonomically into a four-level hierarchy (excluding the
root node “bird” that all images belong to, which does
not provide any information gain). We use the offi-
cial split that has 23, 929 images and 24, 633 images
for training and testing, respectively. In the training
procedure, we directly resize the original images in two
datasets to 240× 240 and then randomly crop them to
224× 224 as inputs of the network. For both datasets,
the training set serves as the database, and the testing
images are used as queries during the testing phase.

4.2 Setups and Evaluation Metrics

We compare our method with a series of pairwise
and triplet labels-based deep hashing methods, in-
cluding DPSH [4], DTSH [22], SHDH [19], and class-
wise labels-based methods, including DCWH [10], ID-
CWH [20], and CSQ [23]. For a fair comparison, we
apply ResNet-50 [24] pre-trained on the ImageNet [15]
in all the methods. For our HPDH, we fine-tune the
backbone with a newly added fully-connected hashing
layer. We train the whole network for 150 epochs using
mini-batch stochastic gradient descent (SGD) with mo-
mentum 0.9 and weight decay 5e-4. The initial learn-
ing rate is set to 5e-3 and decayed by 0.1 every 50
epochs. The hyper parameters are fixed to η1 = 10
and η2 = 0.1. We set {σk} = {1, 2} for CIFAR-100
and {1, 1.5, 2, 4} for NABirds by cross-validation. All
the experiments are run on two Nvidia RTX-2080 GPU
cards with PyTorch.

We present results under both fine-level and
hierarchical-level evaluation metrics. The fine-level re-
trieval performance is evaluated with the mean aver-
age precision (mAP@all). While the hierarchical re-
trieval performance is reported by mean average Hi-
erarchical Precision (mAHP) [19, 25] and the normal-
ized Discounted Cumulative Gain (nDCG) [26]. Specif-
ically, we adopt mAHP@2,500 for CIFAR-100 which
contains exactly 2, 500 images for each coarse category,
while mAHP@250 for NABirds dataset following [25].



Table 1: Results on CIFAR-100 dataset

Methods
mAP@all mAHP@2.5k nDCG@100

32-bit 48-bit 64-bit 32-bit 48-bit 64-bit 32-bit 48-bit 64-bit

DPSH 0.2861 0.3571 0.3952 0.4715 0.5048 0.5212 0.5409 0.6089 0.6442
DTSH 0.6950 0.7269 0.7366 0.6744 0.7019 0.7051 0.7468 0.7625 0.7820
SHDH - - - - - - 0.6141 0.6281 0.6406
DCWH 0.7680 0.8023 0.8178 0.6598 0.6608 0.6698 0.7894 0.8306 0.8439

CSQ 0.7991 0.8032 0.8093 0.5660 0.5677 0.5792 0.8348 0.8376 0.8387
HPDH 0.8292 0.8347 0.8534 0.8802 0.8846 0.8974 0.8520 0.8558 0.8718

Table 2: Results on NABirds dataset

Methods
mAP@all mAHP@250 nDCG@100

32-bit 48-bit 64-bit 32-bit 48-bit 64-bit 32-bit 48-bit 64-bit

DTSH 0.3511 0.3614 0.3764 0.6514 0.6566 0.6634 0.5702 0.5798 0.5902
DCWH 0.4132 0.4882 0.5132 0.5715 0.6400 0.6637 0.5954 0.6551 0.6754

CSQ 0.4419 0.4733 0.5121 0.4557 0.4998 0.5390 0.5445 0.5981 0.6396
IDCWH 0.6811 0.7158 0.7249 0.5857 0.6389 0.6843 0.7228 0.7602 0.7878
HPDH 0.7014 0.7372 0.7366 0.8512 0.8661 0.8560 0.7987 0.8160 0.8040

We provide results nDCG@100 for easy comparison
with [19]. We refer readers to [27] for more details
about hierarchical precision (HP).

4.3 Results and Analysis

Figure 3: The comparison on mAHP results w.r.t. dif-
ferent cutoff points t on two datasets.

We present results on CIFAR-100 in Table 1. We
can find, for general retrieval performance, the pro-
posed HPDH performs better than two state-of-the-
art, i.e., DCWH and CSQ. The mAP of HPDH is 3.0%
and 3.6% higher than that of the second place at 32-
bit and 64-bit, respectively. When it comes to hier-
archical retrieval, our method surpasses the previous
best one with a large margin: it obtains 88.74% mAHP
scores on average, which is 19.4% higher than DTSH’s
69.38%. Note the distinct performance drop from mAP
to mAHP for DCWH and CSQ. In contrast, our HPDH
utilizing the all-level hierarchy labels performs even
better on mAHP than mAP. It indicates that the se-
mantic hierarchical Hamming space is hard to learn if
only use the fine-level class labels. From the compar-
ison with SHDH, which also utilizes hierarchy labels
but pairwise label similarity, our method significantly
outperforms SHDH by 23.2% under nDCG metric in
average. The performance on NABirds dataset is pre-
sented in Table 2. We add the comparison with latest

IDCWH. We can observe that the proposed HPDH per-
forms the best on NABirds in general retrieval and hier-
archical retrieval tasks. Specifically, it achieves 73.72%
under mAP and 81.60% under nDCG at 48-bit, with a
superiority of 2.1% and 5.6% to that of IDCWH. While
for mAHP, HPDH obtains the best result 86.61% at 48-
bit, surpasses the second place DTSH by a nearly 21%
margin.

In Fig. 3, we plot the mAHP@t results w.r.t. differ-
ent cutoff points t in CIFAR-100 and NABirds datasets,
respectively. From Fig. 3, one phenomenon worth not-
ing is, there is a declining trend of mAHP with the in-
crease on t for all the compared methods, while only our
method improves mAHP with the growth on t. Specif-
ically, all the methods have a turning point at t = 500
in the curves of CIFAR-100. The reason is there are ex-
actly 500 images per fine-level class, and it is no longer
sufficient to retrieve the images with exactly the same
labels after this point. However, the proposed HPDH,
which benefits from learning the hierarchical similarity
information, is the only method capable of retrieving
similar images with the same parent class at later posi-
tions. Thus, it proves the effectiveness of the proposed
method for discriminative hierarchical retrieval.

5 Conclusion

We propose a novel deep hashing model towards
fully utilizing the hierarchy structure of the seman-
tic information. Our method is based on a multi-level
Gaussian loss function, and it takes the advantages of
class-level similarity learning and full-level hierarchy
labels in training. Experiments on two hierarchical
datasets show that our method not only helps improve
the fine-level retrieval performance but also results in
state-of-the-art results regarding hierarchical retrieval.
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