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Abstract

This paper proposes joint learning of individual
action recognition and people grouping for improving
group activity recognition. By sharing the information
between two similar tasks (i.e., indiwvidual action recog-
nition and people grouping) through joint learning, er-
rors of these two tasks are mutually corrected. This
joint learning also improves the accuracy of group ac-
tivity recognition. Our proposed method is designed to
consist of any individual action recognition methods as
a component. The effectiveness is validated with vari-
ous IAR methods. By employing existing group activity
recognition methods for ensembling with the proposed
method, we achieved the best performance compared to
the similar SOTA group activity recognition methods.

1 Introduction

Human action recognition is one of the most im-
portant topics in computer vision. While Individual
Action Recognition (IAR) has been studied actively,
Group Activity Recognition (GAR) is still under de-
velopment.

For GAR, graphical models that represent depen-
dencies between random variables are often used [I,

, 3, 41]. These models first recognize the actions of
individual people and then recognize their group ac-
tivity based on the individual actions and the location
of those people. In such stepwise approaches shown in
Fig. 1 (a), the erroneous results of IAR may adversely
affect the subsequent people grouping and GAR. To
reduce such errors, our proposed method, as shown in
Fig. 1 (b) improves IAR and people grouping through
joint learning, and finally improves GAR.

Our work provides the following three contributions:

e We empirically validate that joint learning of IAR
and people grouping is effective for GAR.

e Since our joint learning can be integrated with any
TAR methods, its effectiveness is validated with
various TAR methods.

e By employing existing GAR methods for ensem-

bling with our proposed method, the GAR results
outperform the similar SOTA GAR methods.
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Figure 1. Comparison of GAR approaches. (a)
Typical previous GAR with stepwise processes.
(b) Proposed GAR method using joint learning.

2 Related Work

Individual action recognition (IAR): TAR clas-
sifies the action class of each person. Two-Stream
Convnet (TSC) methods [5, 6, 7, 8] recognize indi-
vidual actions using RGB and flow images. Tempo-
ral Segment Networks (T'SN) [9] sparsely extracts sub-
sequences from videos and uses each subsequence for
TIAR. TSN learns the entire video while reducing the
computational cost. In our paper, we use TSC [6] and
TSN [9] as an TAR component because of their com-
pactness and high accuracy.

People grouping: In our paper, a “people group”
is a set of people who play an important role in each
scene. Previous methods use person tracking for people
grouping that is based on the similarity of people’s po-
sitions and directions [10]. Such methods based only on
simple geometric information are effective only if peo-
ple’s movements can be categorized into several pat-
terns. However, it is difficult to apply such methods
to scenes where the people group changes in a complex
manner (e.g., team sports). Therefore, in our paper,
we use an appearance-based grouping method [11, 12],
which groups people based on local and global image
features in addition to the simple geometric informa-
tion.

Group activity recognition (GAR): GAR rec-
ognizes an activity done jointly by multiple people.
Previous methods are mainly based on graphical mod-
els such as MRF [1], AND/OR graphs [2, 3], and hi-
erarchical models [4, 13]. A graphical model can rep-
resent difficult situations, but it is difficult to apply it
to a dynamic environment where the number of people
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Figure 2. Our joint learning network for GAR. Three modalities (i.e., RGB image and heatmaps representing
individual actions and people group on the leftmost side) are fed into the network consisting of three stages.

changes.

In team-sport videos, the number of people

Individual—action heatmaps F

in a field of view (FoV) is variable in general because
(1) multiple players are temporarily undetectable due
to occlusion, and (2) the FoV is changed largely due to
camera panning, tilting, and zooming.

Joint learning: Joint learning is used for various
tasks. SPFTN [14] simultaneously learns object detec-
tion and segmentation. Bagautdinov et al. [15] simul-
taneously learns people detection, IAR, and GAR in a
volleyball scene. Our proposed method simultaneously
learns TAR and people grouping for GAR.

3 Proposed Method

Our proposed three-stage network is shown in Fig. 2.
In stage 1, individual actions and a people group ob-
tained in advance (Sec. 3.1 and Sec. 3.2) are optimized
through joint learning. In stage 2, the group activity
is recognized through the individual action branch and
the people grouping branch independently. In stage 3,
the group activity is finalized by fusing the results of
the two branches.

3.1 Individual Action Recognition

Assume that the bounding box and action class of
each person are given in the dataset. A network for
TIAR (i.e., TSC [6] or TSN [9] in our experiments) is
trained with the bounding boxes, as shown in Fig. 3
(a). This TAR network predicts the action probabilities
of each person, as shown in Fig. 3 (b). With the action
probabilities of all people, the heatmap of each action is
obtained so that the bounding box of each person doing
the corresponding action is activated. This heatmap is
generated for each action, as shown in Fig. 3 (c). For
example, in the heatmap of “spiking” in Fig. 3 (c), two
people are detected, and the detection probability in
each box is substituted in the box. With this heatmap
representation, we avoid the problem of the graphical
model approach that has difficulty in representing the
variable number of people in a FoV.
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Figure 3. Heatmap representation of action prob-
abilities. These individual-action heatmaps are
fed into the network, as shown in Fig. 2.
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Figure 4. (Left) People involved in the same group
activity (i.e., a spiking player and two blocking
players in this example) are enclosed by bounding
boxes. (Right) The boxes are filled and blurred
for the ground-truth annotation.

3.2 People grouping

For training the people grouping method [11], the
ground-truth heatmap of each people group is anno-
tated, as shown in the right of Fig. 4. A binary human
bounding-box image is generated so that pixel values
inside each person bounding-box and other pixels are
set to 1 and 0, respectively. These bounding-boxes
are detected by SSD [16]. Given a set of RGB im-
ages, flow images, human bounding-box images, and
ground-truth heatmaps, the people grouping network,
as shown in Fig. 5, is trained with the following Binary
Cross Entropy loss function:

>i (=Gilog(s(Ei)) — (1 — Gi)log(1 — s(Ey))) (1

where F; and G; denote the i-th pixel values of the es-
timated and ground-truth heatmaps, respectively. s(-)
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Figure 5. The architecture of people grouping net-
work. The network estimates a people group from
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work. The network optimizes individual actions
and a people group simultaneously.
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is the sigmoid function.

During inference, the pixel values in the estimated
heatmap are binarized with a predefined threshold; 128
in our experiments. The binarized heatmap is passed
to subsequent processes.

3.3 Group Activity Recognition

Our proposed three-stage network is shown in Fig. 2.
In stage 1, the joint learning network optimizes in-
dividual actions (obtained in Sec. 3.1) and a people
group (obtained in Sec. 3.2) through joint learning. In
stage 2, the group activity is recognized through the in-
dividual action branch and the people grouping branch
independently. In stage 3, the group activity is final-
ized by fusing the results of two branches. Our joint
learning can be integrated with any IAR methods.

In stage 1, individual actions (obtained in Sec. 3.1)
and a people group (obtained in Sec. 3.2) are optimized
through the joint learning network, as shown in Fig. 6.
Note that the heatmaps representing the individual ac-
tions and people group are normalized between 0 and
1, while the individual-action heatmaps are colored for
visibility in Fig. 3. After the first layer of the network,
the feature maps from individual actions and a people
group are concatenated, as depicted by & in Fig. 6.
The concatenated feature maps are fed into the sec-
ond layer. Since this concatenation can be regarded
as the early fusion, it is expected that their errors are
mutually corrected.

In stage 2, the group activity is recognized in the in-
dividual action branch and the people grouping branch
independently. We use ResNet [17] as recognition net-
works in these two branches. Each recognition network
accepts an overlaid image (denoted by O) obtained by
the following equation (depicted by ® in Fig. 2):

I’i X Hi, Hz > 0.2
Oi = {Il- x 0.2, otherwise @

where I; and H; denote the i-th pixel values of the in-
put RGB image, I, and the optimized heatmap given
to each branch from the joint learning network, respec-
tively. In O, we can emphasize the important regions in
the input RGB image while keeping the global context
represented in the image.

In stage 3, the final GAR result is acquired by en-
sembling. Specifically, this ensembling is done as the
weighted sum of the GAR results (i.e., the probabil-
ity values of each group activity, which are denoted by
PgIAR and PfG in Fig. 2) of the individual action and
people grouping branches in the ratio of 7:3. These
weights were determined empirically.

Our network consisting of stages 1, 2, and 3 is
trained with the following two types of loss functions.
First, the BCE loss expressed by Eq. (1) is used for
each of the outputs of the joint learning network in
stage 1. Second, the cross-entropy loss is computed
for the final results of GAR denoted by P in stage 3.
These loss functions allow us to improve éAR in stage
3 while enhancing IAR and people grouping in stage 1.

4 Experimental Results

We evaluated our proposed method with a publicly
available volleyball dataset [18]. The dataset contains
4,830 sequences extracted from 55 volleyball games.
These sequences are divided into 3,493 training se-
quences and 1,337 test sequences. A middle frame of
each sequence is annotated with 9 individual action
classes (i.e., waiting, setting, digging, falling, spiking,
blocking, jumping, moving, and standing) and a people
group, as shown in the right of Fig. 4. Each sequence is
annotated with 8 group activity classes (i.e., right set,
right spike, right pass, right pass, right winpoint, left
set, left spike, left pass, and left winpoint).

IAR and GAR are evaluated with Multi-class Clas-
sification Accuracy (MCA) and Mean Per Class Accu-
racy (MPCA) [19]. People grouping is evaluated with
IoU, Precision, Recall, and F-measure. In our experi-
ments, the IoU threshold was 50%.

4.1 Individual Action Recognition

TAR results are shown in Table 1. The upper six
rows show the results of TSN and TSC, each of which
is executed with three different modalities (i.e., RGB,
flow, and RGB+flow images). The bottom row shows



Table 1. Comparisons of IAR results (%). Our
joint learning improves the TAR results.

Table 3. GAR results (%) of our proposed
method. PFP&, PgIAR, and Pf are group activ-
ity probabilities, shown on stage 3 in Fig. 2.

Method [ Input | MCA MPCA
TSN RGB 85.1 66.3 Method | Joint Learning | MCA  MPCA
TSN FLOW 82.0 55.6 pPre No 85.4 86.0
TSN RGB4+FLOW | 84.9 62.7 ijR No 877 875
TSC RGB 83.4 574 ng No ]9.7 89.9
TSC FLOW 80.3 44.2 PG

P Yes 85.6 86.1
?S.Ct 1 . RGB+FLOW | 829 50.4 PjAR Yes 9.4 9.1

oint learning pF <

(Proposed method) RGB, FLOW | 844 67.2 Py Yes 90.7  90.6

Table 2. Comparisons of people grouping results
(%). JL means Joint Learning.

JL [ Precision [%] [ Recall [%] | F-measure [%]

No [11] 81.3 79.6 80.4

Yes 81.3 80.6 80.9

the best results of our joint learning network. The re-
sult is acquired when TSN using the RGB+flow images
are employed as the TAR component in our proposed
method.

The best MCA is acquired by TSN with RGB image
without joint learning (line 1 in Table 1). On the other
hand, the best MPCA is acquired by our joint learning
(line 7 in Table 1). In our dataset, the number of peo-
ple in each TAR class is inequality. For example, the
number of “standing” accounts for about 69% of all
classes. Since MCA is about 69% even if all individual
classes are recognized as “standing,” MPCA is more
reliable than MCA in such a class imbalance situation.

4.2 People Grouping

The results of people grouping before and after our
joint learning are shown in Table 2. In all three metrics,
the joint learning outperforms the original results [11].

4.3 Group Activity Recognition

As shown in Table 3, we verify the performance gains
by our joint learning for GAR. For GAR without the
joint learning (shown in the upper three rows in the ta-
ble), the original recognition results of IAR and people
grouping are given directly to stage 2 by skipping stage
1. In all three cases, our joint learning outperforms the
one without our joint learning.

Table 4 shows a comparison with the SOTA GAR
methods. While our proposed method with stages 1,
2, and 3 outperforms CERN [20], SSU [15], and Stag-
Net [21], PDN-ARN [22], ARG [23] and CRM [24] are
better than ours.

As mentioned in Sec. 3.3, our joint learning can be
integrated with any IAR methods. For improving the
performance of the proposed method, the TAR result
given by ARG is fed into our proposed method. Its

Table 4. Comparison with other SOTA GAR
methods. Our proposed method is improved by
another TAR result and GAR ensembling.

Method | MCA | MPCA
Proposed method 90.7 90.6
With TAR from ARG 90.8 90.9
3-fusion 93.0 93.3
5-fusion 93.3 93.6
CERN [20] (CVPR2017) 83.3 83.6
SSU [15] (CVPR2017) 89.9 -
StagNet [21] (ECCV2018) 89.3 -
PDN-ARN [22] (MMM 2021) | 92.2 -
ARG [23] (CVPR2019) 92.6 -
CRM [24] (CVPR2019) 93.0 -

results are shown in line 2 of Table 4. While its perfor-
mance is better than that of the proposed method, it
is still inferior to PDN-ARN, ARG and CRM. For fur-
ther improvement of the proposed method, more GAR
results are employed for ensembling in stage 3.

The 3-fusion method (line 3 in Table 4) fuses the
GAR results of ARG in addition to those of our TAR
and people grouping branches in our proposed method.
The 5-fusion method (line 4 in Table 4) fuses the
GAR results of the 3-fusion method and IAR and peo-
ple grouping branches in the “With TAR from ARG”
method (line 2 in Table 4). We can see that the 5-fusion
method outperforms all SOTA GAR methods.

5 Concluding Remarks

We proposed our joint learning of TAR and people
grouping for improving GAR. Our experimental results
demonstrated that our joint learning optimizes individ-
ual actions and a people group, and finally improves
GAR. The base method can be improved by ensem-
bling the results of any existing GAR results.

Future work includes the improvement of compo-
nents in the proposed method. In particular, people
grouping is trained in a supervised manner. Since this
makes it difficult to train a huge number of data, unsu-
pervised people grouping is needed. TAR and GAR can
be improved with additional cues such as estimated hu-
man poses [25, 26]. In addition, visual explanation [27]
is effective for misclassification analysis.
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