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Abstract

In this paper we propose to tackle the problem of

semi-supervised anomaly detection, which aims to learn

the outlier detector from the training set composed of

only inliers. Built upon the recent advances of introduc-

ing contrastive learning to achieve the state-of-the-art

of anomaly detection, we propose a simple but e↵ective

extension to further boost the performance via integrat-

ing the contrastive learning and the generative model

of inliers into a unified framework. On one hand, the

contrastive learning amongst the real samples and syn-

thetic ones produced by the generative model improves

the representation learning; on the other hand, the gen-

erative model learning is also benefited from the con-

trastive learning. We conduct extensive experiments to

demonstrate the e�cacy of our proposed method to ad-

vance anomaly detection, its superiority against several

baselines, and the contribution of our model designs.

1 Introduction

Anomaly detection, which is also known as outlier
detection or out-of-distribution (OOD) detection, is
one of the most important tasks in general field of artifi-
cial intelligence and has diverse applications from net-
work intrusion detection to automatic manufacturing
via robotics. The task of anomaly detection is to iden-
tify the outliers which are referred to the samples obvi-
ously deviating from the normal distribution of a given
dataset (noting that the normal samples are inliers).
From the literature and research works of anomaly de-
tection, there are three main scenarios, in accordance
with the existence of outlier observations in the train-
ing dataset for learning outlier detector/classifier: su-
pervised, unsupervised, and semi-supervised ones.

The supervised anomaly detection assumes that the
training dataset contains both the labeled inliers and
outliers. For instance, Görnitz et al. [10] label outliers
by using active learning, and train the outlier detec-
tor in a supervised manner; Pang et al. [25] propose
to leverage a few outliers for end-to-end learning both
feature representation and a scoring function which en-
force the deviation between outliers and inliers in terms
of the anomaly scores; Hendrycks et al. [15] present
an outlier exposure approach which particularly uti-
lizes an auxiliary dataset of outliers to better learn the

representation for anomaly detection. However, such
supervised scenario is typically considered to be im-
practical due to the fact that outliers are often scarce
and diverse thus being hard to collect.

The unsupervised anomaly detection has an assump-
tion di↵erent from the supervised one, in which the
training set still contains (mostly) inliers and (small
fraction of) outliers at the same time but they are all
unlabeled. The learning objective now thus turns to
single out outliers from the training set. For instance,
[34] uses the reconstruction errors of an autoencoder
for finding a discriminative separation between inliers
and outliers; [35] jointly optimizes for the reconstruc-
tion errors and the density estimation on the latent
representation of inliers in order to improve distiguish-
ing outliers; and the robust PCA technique are adopted
by [5, 20] together with the autoencoder reconstruction
to enforce the linear structure in the latent embedding
thus achieving better robustness against outliers. How-
ever, as the learning of unsupervised anomaly detection
aims to separate outliers from inliers particularly for
the given dataset, the learned model usually becomes
less generalizable to other datasets or new observations
thus limiting its applications.

When it comes to the semi-supervised scenario of
anomaly detection (also known as one-class classifica-
tion), there exists an assumption which is typically
considered to be more practical than the supervised
scenario and more feasible than the unsupervised one:
the entire training dataset includes only inliers (due
to the rare and diverse nature of outliers). The com-
mon solution of semi-supervised anomaly detection is
learning to model the observed inliers and estimate the
novelty scores of samples at the test time. Such semi-
supervised scenario attracts more focuses in recent
years, where the research works can be roughly further
grouped into four categories: (1) One-class classi-

fiers, which aim to learn a decision boundary that en-
closes the inliers. For instance, [31, 33] adopts support
vector machines (SVMs) for such setting, while [29]
uses a neural network to approximate the kernel of one-
class SVM; (2) Reconstruction-based approaches,
which typically follow the framework of firstly mod-
elling the generative procedure of inliers via the archi-
tectures based on autoencoder then adopting the re-
construction errors to identify the outliers, with the
assumption that the generative model usually general-
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izes worse on the outliers which are quite di↵erent from
the normal inlier samples. For instance, [30, 2, 27] uti-
lize the adversarial learning scheme to learn the gen-
erative model of inliers. [26] further imposes stronger
constraints on the latent space in order to limit the
generalization ability of generator and enlarge the pos-
sible reconstruction error for the outliers. [12] in turn
additionally stores the prototypical patterns of inliers
to better distinguish outliers. (3) Density-based ap-

proaches, which target to fit distribution for the in-
liers, and perform the detection based on the likeli-
hood. For example, [24] proposes a hypothesis testing
scheme to determine whether a new sample resides in
the typical set or not. [8, 13] estimate energy based
models (EBMs) of inliers and find outliers based on its
energy function. And [28] proposes a new likelihood-
ratio method which removes the impact of background
statistics. (4) Self-supervised approaches, which
aim to learn good representations for the training in-
liers by the self-supervised learning, and detect out-
liers by measuring the distance between test samples
and training ones on the representation space. For
example, [11, 16] are amongst the first for discover-
ing the benefits of self-supervised representation learn-
ing to the task of anomaly detection. [3] uses metric
learning technique to improve the classification-based
self-supervised representation learning. In particular,
a recent work published by [32] leverages the recent ad-
vance in the contrastive learning [6] (which is a popular
branch of self-supervised learning) to reach the state-
of-the-art performance for anamoly detection.

In this paper, we discover that the generative mod-
els and the idea of contrastive learning behind [32]
can be seamlessly integrated into a unified framework
to further improve the ability of anomaly detection.
Basically, we train the generative model on the in-
liers built upon the architecture of adversarial autoen-
coder [22] and expect it only capable of generating the
samples that are similar to the training inliers, while
the contrastive learning is simultaneously applied on
both the real and synthesized samples. We experimen-
tally demonstrate that the generation is beneficial for
the contrastive learning and inversely the contrastive
learning also contributes to better quality of generated
samples. With careful and holistic design of learning
objectives, our proposed method is e↵ective to boost
the performance of anomaly detection in comparison to
the state-of-the-art baseline CSI [32] by a clear margin
on various datasets, which are detailed in the following.

2 Methodology

2.1 Preliminaries

In this paper, we mainly consider the semi-
supervised anomaly detection in terms of image data.
Let U = X [ X c be the population of inliers and out-
liers. Given a set of inliers X ✓ X as training data, we
want to learn a detection function such that the output

score di↵erentiate the outliers from inliers. Typically,
the detection function is the composition of two com-
ponents (i.e. M � F): a feature extractor F : U ! Z
which extracts the representation z of a given sample
x, and a mapping function M : Z ! R which maps the
representation z to the output score.

As stated previously, the contrastive learning frame-
work adopted by CSI [32] largely benefits the anomaly
detection and our framework is stemmed on it, we
therefore briefly review its main idea here. Given a

sample xi 2 X, its two counterparts x(1)

i and x(2)

i
are firstly produced by applying the transformations
T1 and T2 respectively sampled from T , where T in-
cludes random resized cropping, random color distor-
tions, random gray scale, and random Gaussian blur,
as following the setting in SimCLR [6] work. The ob-
jective of contrastive learning aims to perform the in-

stance discrimination where x(1)

i and x(2)

i should have
similar representations but di↵erent from all the other
samples X\xi, the SimCLR loss is hence defined as:

LSimCLR(X) =
X

i

LNT�Xent(x
(1)

i , x(2)

i , X\xi)

+
X

i

LNT�Xent(x
(2)

i , x(1)

i , X\xi)

in which LNT�Xent(x, x+, {x�})

= � log
exp(sim(F(x),F(x+))/⌧)P

x02x+[{x�} exp(sim(F(x),F(x0))/⌧)

(1)

where sim indicates the cosine similarity and ⌧ is the
temperature parameter.

In [6], they discover that not all transformations
benefit the contrastive learning, instead, some other
transformations (e.g. rotation) actually deteriorate the
performance of learning, where the resultant images
after performing these transformations are named as
shifted instances. Moreover, when each of the shifted
instances is independently treated as a new sample,
they can inversely contribute to better representation
learning thus boosting the anomaly detection. With
denoting the transformations related to shifted in-
stances as S = {S1, S2, ..., SK} (assuming there are
K transformations), the contrastive objective Lcon�SI

built upon shifted instances is written as:

Lcon�SI(X) = LSimCLR({X,XS})

where XS =
[

i

[

S2S
{S(xi)} (2)

Moreover, the objective Lcls�SI based on the auxiliary
classification task [9, 11] to predict the type of trans-
formation of a shifted instance also helps the learning:

Lcls�SI(X) = �
X

i

log p(y = S|S(xi)) (3)

The overall objective of CSI [32] approach hence is:

LCSI(X) = Lcon�SI(X) + Lcls�SI(X) (4)



Figure 1: Illustration of our proposed method, which
seamlessly integrate generative model built upon ad-
versarial autoencoder and contrastive learning into a
unified framework. Please refer to Sec. 2.2 for details.

2.2 Our Proposed Method

As motivated previously, our proposed method in-
tegrates the generative model and contrastive learning
into a unified framework, as illustrated in Figure 1,
which includes five sub-networks: encoder E , generator
G, latent discriminator D0, discriminator D, and
feature extractor F . The learning objectives of our
proposed method can be categorized into two groups:
Joint Generative and Contrastive Learning

and Learning Adversarial Autoencoder, in which
we detail these two groups sequentially in the following.

• Joint Generative and Contrastive Learning.
Assume that the generator G is able to well model the
generative procedure of real samples of inliers x 2 X in
the training set, the synthesized samples x̃ 2 X̃ (where
x̃ = G(h) and h ⇠ N (0, 1)), which ideally are similar to
real inliers [26], could help to enrich the training set of
contrastive learning thus benefiting the representation
learning. We hence propose to have LJOINT to train
the feature extractor F :

LJOINT = LCSI(X [ X̃) (5)

Moreover, we propose to utilize the contrastive learning
amongst the synthesized samples X̃ which in turn helps
to improve the learning of generator G:

LCSI-S = LCSI(X̃) (6)

• Learning Adversarial Autoencoder. The gener-
ative model in our proposed method is built upon the
architecture of adversarial autoencoder [22]. First, we
adopt the adversarial learning amongst real samples x,
synthesized samples x̃, and the reconstructed samples
x̂ = G(E(x)) as inspired by VAEGAN [21]:

LD = logD(x) + log (1�D(x̃)) + log (1�D(x̂)) (7)

Second, the reconstruction loss between x and x̂ =
G(E(x)) is adopted on both pixel and feature domains,
where the latter additionally includes the contrastive
learning idea inside (� is experimentally set to 100):

LREC = �kx� x̂k2
2
� sim(F(T1(x)),F(T2(x̂))) (8)

Third, we adopt latent discriminatorD0 to impose prior
distribution on the latent space, with h ⇠ N (0, 1):

LLD = logD0(h) + log (1�D0(E(x))) (9)

Lastly, we introduce the latent reconstruction loss as [1,
4] to better regularize the learning of generative model:

LLREC = kE(G(h))� hk2
2

(10)

The overall training procedure of our proposed method
is then summarized in the algorithm below:

Algorithm 1: Training our proposed method

Result: ✓E , ✓G , ✓D0 , ✓D, and ✓F
Initialize ✓E , ✓G , ✓D0 , ✓D, and ✓F
for next image batch X do

Update ✓F by minimizing LCSI(X)
if every N batches then

Sample plenty h ⇠ N (0, I)
X̃, X̂  G(h),G(E(X))
✓D, ✓G , ✓E  argmin

✓D
max
✓G ,✓E

LD(X, X̃, X̂)

✓G  argmin
✓G

LCSI-S(X̃)

✓D0 , ✓E  argmin
✓D0

max
✓E

LLD(h,X)

Sample T1, T2 ⇠ T
✓G , ✓E  arg min

✓G ,✓E
LREC(X, X̂, T1, T2)

✓E  argmin
✓E

LLREC(h)

✓F  argmin
✓F

LJOINT(X [ X̃)

end

end

2.3 Outlier Score Function

We use a simplified score function M from [32] to
measure the outlier score by comparing the average
feature similarity between a given test sample xtest and
its nearest neighbor x̆ from the training set X, under
various transformations S related to shifted instances:

M(xtest, x̆) =
X

S2S
m(S(xtest), S(x̆))

where m(x, x0) = sim(F(x),F(x0)) · kF(x)k

and x̆ = argmax
x02X

X

S2S
m(xtest, x

0)

(11)

Moreover, as indicated in [32], the detection perfor-
mance can be further improved by applying multiple
random transformations {Tr}Rr=1

⇠ T in addition to S
on the score function M, which results in Mens.

3 Experimental Results

Setup. The implementation of our proposed method
basically follows [32] to adopt ResNet-18 [14] as our fea-
ture extractor F and uses rotation 0�, 90�, 180�, 270�



Table 1: Average AUROC (%) of anomaly detection on CIFAR-10, CIFAR-100, and ImageNet-30

Dataset DeepSVDD [29] OCGAN [26] Geom [11] Rot+Trans [16] GOAD [3] CSI [32] Ours

CIFAR-10 64.8 65.7 86.0 90.1 88.2 94.3 95.1

CIFAR-100 - - 78.7 79.8 74.5 89.6 90.9

ImageNet-30 - - - 85.7 - 91.6 93.0

for augmentation S, as well as follows [23] to design
the network for generator G and discriminator D, while
the architecture of encoder E is symmetric to G. Most
of our optimization settings follows [32]. We use Adam
optimizer [18] for model training with learning rate and
momentum set to 0.0002 and (0.9, 0.999) respectively.
Moreover, we set N (refer to Algorithm 1) to 5.
Dataset and Metrics. Three datasets are leveraged
for running our evaluation, i.e. CIFAR-10 [19], CIFAR-
100 [19], and ImageNet [7], where we consider the one-
class setup in which each task chooses a single class as
the inlier and other classes are outliers, and the overall
performance is average over all tasks. In particular, for
CIFAR-100, we adopt the pre-defined superclass (i.e.
5 classes belonging to similar object category) as the
unit of a class for our experiments, while for ImageNet
we adopt only 30 classes (i.e. ImageNet-30 as follow-
ing [16, 32]). The model is trained on only inliers, and
its performance is evaluated on full testing set. The
performance metric is the area under the Receiver Op-
erating Characteristic (AUROC) curve.

3.1 Quantitative and Qualitative Results
We compare our proposed method with respect to

several baselines, including DeepSVDD [29], OCGAN
[26], Geom [11], Rot+Trans [16], GOAD [3] and the
state-of-the-art CSI [32]. Table 1 provides the semi-
supervised anomaly detection results for CIFAR-10,
CIFAR-100, and ImageNet-30 datasets. It is significant
to see that our proposed method achieves superior per-
formance in comparison to all the baselines on all the
three datasets. In particular, the outperformance of
our proposed method with respect to the the state-of-
the-art CSI method successfully verifies the our contri-
bution on integrating contrastive learning and genera-
tive model into a unified framework, where the synthe-
sized samples benefit contrastive learning for learning
better representations while the constrastive learning
in turn helps to improve the generation. In Figure 2 we
also provide some qualitative examples of our method,
where the inlier class is CIFAR-10 Cat and other classes
are outliers. We can see that, all the outliers are recon-
structed as inliers, and inliers remain alike themselves,
thus verifying the e↵ectiveness of our proposed method.

3.2 Ablation Study
We further conduct ablation study on our model de-

signs, based on the CIFAR-10 dataset, where we start
from CSI method and sequentially integrate our gen-
erator G and encoder E onto it to reach the full model
of our proposed method. With only having generator
G integrated with CSI method, the AUROC score im-
proves from 94.3 (i.e. CSI only) to 94.8, while further

(a) (Left) Real inlier (Right) Its reconstruction

(b) (Left) Real outlier (Right) Its reconstruction

Figure 2: Qualitative examples (inlier: CIFAR-10 Cat)

including encoder E (i.e. our full model) advances the
AUROC score to 95.1, thus verifying again the bene-
fit of generative model made for contrastive learning.
Moreover, we adopt the FID score [17] (the lower the
better), which is widely adopted for quantifying the
quality of synthesized images, to perform the ablation
study. We observe that the variant of having only gen-
erator integrated with CSI has FID score 69.5 while
our full model achieves 54.1, thus implicitly verifying
that better constrastive learning helps the generation.

4 Conclusion
In this work, we propose an e↵ective approach to

boost the performance semi-supervised anomaly de-
tection via having contrastive learning and generative
model integrated in a unified framework. The exten-
sive experiments on various datasets and the ablation
studies successfully verify the mutual benefits between
contrastive learning and generative model as well as
the contribution of our model designs.
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