
Supplementary Material for Seeing Farther Than Supervision:
Self-supervised Depth Completion in Challenging Environments

A Network Architecture

The proposed method consists of DCNet and
FlowNet. Both networks use almost the same net-
work architecture as in [1]. For DCNet, we employ
ResNet-18 [2] as an encoder and DispNet [3] as a de-
coder. Since the input is an RGB-D image, the input
channel of the first convolution layer is changed to 4.
We employ PWCNet [4] for FlowNet. Similar to DC-
Net, the input channels of the first layer of FlowNet
are 4.

B Loss Functions

As described Sec.2.2, the loss function for FlowNet
consists of three terms. The first term is the photomet-
ric loss Lfp. Using input image I and warped image
I ′, this is defined as follows:

Lfp = α
1− SSIM(I, I ′)

2
+ (1− α)|I − I ′|1 (1)

where SSIM is the structural similarity [5]. We set α
to 0.85 in our experiments. The second term is the
flow smoothness loss Lfs. Using optical flow F , this is
defined as follows:

Lfs =
∑
p

|∇F (p)| · (e|∇I(p)|)T (2)

where p is a pixel in image I. The third term is
the forward-backward flow consistency loss Lfc. Let
∆F (pt) be the flow difference computed by forward-
backward consistency check at pixel pt in I. The
forward-backward flow consistency loss is calculated as
follows:

Lfc =
∑
pt

δ(pt) · |∆F (pt)|1 (3)

where

δ(pt) =

{
1 (|∆F (pt)|2 < max{α, β|∆F (pt)|2})
0 (otherwise)

(4)

We set (α, β) to (3.0, 0.05) in our experiments.
As described in Sec. 2.3, the loss function for DC-

Net consists of five terms. Here, we will explain three
losses: photometric loss, depth smoothness loss, and
dense reprojection loss. The photometric loss is same
as Eq. 1. The depth smoothness loss is the same as in
Eq. 2, replacing the optical flow with the depth.

Lds =
∑
p

|∇D(p)| · (e|∇I(p)|)T (5)

We employ the dense reprojection loss proposed by
Zhao et al. [1]. It is computed using depth and op-
tical flow estimates. Let two images be Ia and Ib, the
corresponding depth estimates be Da and Db, camera
pose be Ta→b, and optical flow be Fa→b. The repro-
jection loss based on optical flow Fa→b is defined as
follows:

pbd = φ(KTa→bDa(pa)K−1[pa1]T ) (6)

pbf = pa + Fa→b(pa) (7)

Lpf =
1

|Mr|
∑
pa

Mr(pa)|pbd − pbf |+ |Depi| (8)

where pa is a pixel in image Ia, K is a camera intrin-
sic matrix, φ is a transformation from homogeneous to
Euclidean space, Mr is an inlier score map, and Depi

is a distance map from each pixel to the correspond-
ing epipolar line. The depth reprojection is defined as
follows:

Lpd =
1

|MoMr|
∑
pa

Mo(paMr(pa)|1− Da
b (pbd)

Ds
b

| (9)

where Da
b is the reprojected depth map by Da and

Ta→b, D
s
b is the interpolated depth map of Db, and Mo

is the occlusion mask from optical flow. Finally, the
dense reprojection loss is formulated as follows:

Ldr = λ1Lpf + λ2Lpd (10)

C Comparison with Existing Methods

We provide a quantitative comparison of the pro-
posed method with existing methods in Sec.4.2. Since
this work aims to complement long distances that sen-
sors cannot acquire, we verify the effectiveness of the
proposed method at such distances. Fig. 1 shows the
performance at different criteria ranges, i.e., from the
front of the camera to a specific distance. For most
of the distance ranges, the proposed method outper-
forms the previous self-supervised depth completion
method [6]. Both methods are very accurate up to
the input depth of the sensor. When the measurable
range of the sensor is exceeded, both methods have
larger errors and lower accuracy. The results show that
the proposed method has less performance degradation
over distance than the conventional method.

We provide more qualitative results on the NYU
dataset [7] in Fig. 2.
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Figure 1: Performance at different criteria ranges.
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Figure 2: Qualitative comparison of the proposed method with the recent self-supervised depth completion
method [6].


