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Abstract

Estimation errors caused by perspective distortions
are a long-standing problem in the domain of crowd
counting. In this paper, we propose a novel loss func-
tion to allow filters in convolutional neural networks to
learn features that are adaptive to the scale and per-
spective variation of individuals in crowd images. By
exploring the crowd count error from regions close to
the vanishing point of a perspective distorted image,
we are able to penalize under-estimations. This is use-
ful to train a network that is robust against perspec-
tive distortion for accurate density estimation. The
proposed method is scene-independent and can be ap-
plied effectively to crowd scene with a variety of phys-
ical layout. Extensive comparative evaluations demon-
strate that our proposed method achieves significant im-
provement over the state-of-the-art approaches on the
challenging ShanghaiTech and UCF-QNRF datasets.

1 Introduction

One of the most intriguing researches of human
behaviour focuses on the crowd phenomenon. What
makes crowd phenomenon interesting is that each indi-
vidual is self-organized but they tend to act and gather
as a united mass without prior awareness [1]. This no-
tion of crowd collectiveness is commonly being applied
in visual crowd analysis for crowd segmentation [2, 3],
crowd behaviour analysis [4, 5] and crowd density esti-
mation [6, 7]. Among these analyses, substantial effort
have been made in recent years toward crowd density
estimation, largely in response to rising anxieties of re-
current fatal crowd tragedy at mass gatherings, e.g.
pilgrimages [8] and parades [9]. The endeavour is fur-
ther intensified to meet the need for a proactive crowd
management to anticipate disasters.

The complexity of estimating crowd density in-
creases disproportionately in relation to the number
of individuals in a crowd [11]. This is not surprising
since individuals in crowd are often severely occluded
due to excessive number of individuals in the scene.
To further complicate the matter, individuals in crowd

Crowd images

Ground truth count

Estimated count using CSRNet [10]

Absolute difference between ground truth count and estimated
count

Figure 1: Crowd images with variations in terms of
perspective, illumination, crowd density and physical
layout of the environment with the respective ground
truth count, estimated count using CSRNet [10] and
absolute difference between ground truth count and
estimated count. Crowd regions close to the vanish-
ing point of perspective distorted images are regions
with highly inaccurate density estimation, i.e. highly
under-estimated. Best viewed in colour.

scenes often experience drastic variations in their vi-
sual appearance owing to different illumination condi-
tion and camera orientations. In addition, crowdedness
and distribution of individuals are rarely uniform due
to the viewpoint of the scene captured and/or the un-
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constrained physical layout of the environment. Never-
theless, one of the foremost challenges in crowd density
estimation is the effects of perspective distortion owing
to camera orientation. For instance, the images in Fig-
ure 1(row 1) depicts that the individuals who are closer
to the camera view appear larger than those further
away from the camera.

Traditional crowd density estimation approaches ad-
dress the variation of visual appearance problem by
relying on handcrafted features to count by detecting
each individual in a crowd [12, 13, 14] or count by re-
gression [15, 16, 17]. The latter approaches obviate the
need to segregate individuals by estimating the crowd
density based on collective description of crowd pat-
terns (e.g. texture features). The crowd density esti-
mation problem is formulated as estimating a contin-
uous density function whose integral over any crowd
image region gives the count of individuals within that
region [18]. In order to address the problem of per-
spective distortion, image space is divided into differ-
ent pixel-grid or multiscale pixel-grid where each grid is
modelled by a regression function. This technique has
been extended to convolutional neural network (CNN)
based approaches [19, 20, 21, 22, 23] in the form of
multi receptive fields provided by convolutional filters
of different sizes. Commonly, these filters are adopted
using multi-column CNN architecture.

Despite the promising results of these techniques,
as noted by Li et al. [10], each receptive field in such
network learns nearly identical features. In essence,
the filters are unable to adapt to the scale and per-
spective variation in crowd scenes due to perspec-
tive distortion. Moreover, in the presence of low and
high density crowd images, multi-column architectures
tend to either under-estimate or over-estimate crowd
count [23]. In order to overcome these problems, a
deeper, single column network architecture [10] has
been proposed and significant improvements have been
achieved. Nonetheless, similar to multi-column archi-
tectures, as illustrated in Figure 1(row 3 and row 2),
this network still requires perspective information to
cope with perspective distortion in crowd scenes.

Interestingly, we observe in Figure 1(row 4) that
crowd regions close to the vanishing point of perspec-
tive distorted images are regions with highly inaccu-
rate density estimation, i.e. highly under-estimated.
Individuals in these regions are represented with fewer
pixels per target, thus, making it difficult to discern
each individual. This observation can be embedded in
a loss function that serves to improve network train-
ing. This is to allow each kernel filter to learn features
that are adaptive to the large scale and perspective
variation of individuals in crowd images. Accordingly,
the overall network is robust to perspective distortion
in crowd images for density estimation. Specifically,
in this work, the error counts from regions close to
the vanishing point are used to further penalize under-
estimation of crowd count prominent in the region. To

our knowledge, the notion of using loss function to cope
with perspective distortion is generally unprecedented
in the existing crowd density estimation studies.

The main contribution of this paper is to propose
a novel loss function that enables accurate density es-
timation on perspective distorted crowd images. The
loss function allows each filter in a network to learn
features that are adaptive to the scale and perspec-
tive variation of individuals in crowd images. Instead
of designing multi-column architectures like most exist-
ing works [21, 22], we formulate an approach to harness
the error count in perspective distorted crowd images
to improve crowd density estimation performance. Ex-
tensive experimental evaluations on ShanghaiTech [21]
and UCF-QNRF [7] datasets in Section 4 demonstrate
the effectiveness of the proposed loss function to allow
receptive fields to adapt to perspective distortion in
crowd images. The proposed approach achieved state-
of-the-art performance for crowd density estimation.

2 Related Work

Existing crowd density estimation can be divided
into two main approaches. The first approach infers
crowd count by tracking or detecting individuals in a
scene. For instance, Rabaud and Belongie [12] per-
form clustering of coherent trajectories to determine
the number of individuals in the scene. Using a sim-
ilar concept, Ge and Collins [13] proposed a Bayesian
marked point process to detect individuals in crowd for
density estimation. Such approaches require that indi-
viduals in the scenes are clearly visible. However, in
high-density crowd scenes, tracking and detection tend
to fail due to severe occlusion and background clutter.
Therefore, the first approach generally works well in
low-density crowd scenes.

In order to eliminate the need to track or detect
individuals in crowd scenes, most existing density esti-
mation approaches [16, 24, 17] emphasise on extracting
a set of low-level image features (i.e. texture features)
and learn a direct mapping from the features to esti-
mate crowd density. Chan et al. [24] propose to ex-
tract dynamic texture features and map the features
to a number of people by using Bayesian regression.
However, a common problem in regression approach is
perspective distortion where features of individuals ex-
tracted at different depth in an image would have high
discrepancy in crowd density value. One of the com-
mon approaches to deal with this problem is to divide
the image space into different pixel-grids, where each
pixel-grid is modelled by a regressor to mitigate the ef-
fects of perspective distortion. For instance, Chen et
al. [16] and Idrees et al. [17] rely on modelling of local
features to analyse pixel-grids for density estimation.

The idea of pixel-grids-based regression approach
has been implemented in CNN-based approaches in the
form of multi-column [21, 22, 23] or multi-scale archi-
tectures [20]. The multi receptive fields provided by the



convolutional filters of different sizes are dedicated to
different types of scales in perspective distorted crowd
scenes. Despite the flexibility of multi receptive fields
and promising results, Li et al. [10] show that the
filters, in essence, learn similar features. In an effort
to cope with perspective distortion for density estima-
tion, Li et al. [10] propose a deep network with di-
lated kernels to generate high-quality density maps for
density estimation. In contrast to the aforementioned
approaches, we propose a novel loss function to curb
the effects of perspective distortion for a more accu-
rate density estimation. Error counts from crowd re-
gions close to the vanishing point in images are used to
penalize under-estimation of crowd count.

3 Proposed Method

In this paper, we propose a novel loss function
to deal with the problem of perspective distortion in
crowd images for crowd density estimation. The fun-
damental idea of the novel loss function is to improve
network training with the aim to have kernel filters
that are adaptive to the scale and perspective varia-
tions of individuals in crowd images. This is achieved
by penalizing under-estimation of crowd count which
is prominent in crowd regions close to the vanishing
point in crowd images.

3.1 Perspective-Aware Loss

In a perspective distorted crowd image, individuals
that are nearer to the vanishing point in the image are
usually represented with only few pixels per individual.
Hence, it is extremely challenging to discern individu-
als within these regions. As illustrated in Figure 1,
we observe from experiments that the regions are com-
monly under-estimated. Therefore, in this work, we
incorporate the error count from these regions as a loss
function to improve the network training.

Formally, given a crowd image, I ∈ RP , P is the
number of pixels and cGT is the ground truth count
of an image. To this end, we propose to learn Θ by
minimizing a combination of two losses:

LT (Θ) = Ll1(Θ) + LC(Θ) (1)

Ll1(Θ) =
1

2N

N∑
i=1

∥∥YIi(·; Θ)− Y GTIi (·)
∥∥
1

(2)

LC(Θ) =

N∑
i=1

∥∥[YIi(·; Θ)− Y GTIi (·)] •MIi

∥∥
1

(3)

where • denotes element-wise multiplication. Ll1(Θ) is
the l1 norm that measures the absolute count differ-
ence between an estimated count and the ground truth
count. LC(Θ) is the error count from crowd regions

which are close to the vanishing point of an image. N
is the total number of training images. Y GTIi

(·) and
YIi(·; Θ) correspond to the ground truth density map
and estimated density map of image Ii. The density
map is generated using geometry-adaptive kernels [21]
to adaptively determine the spread parameter of Gaus-
sian kernel based on local crowd density. Specifically,
the spread parameter for each individual is based on its
average distance to its neighbour. Note that however,
when the estimated count of an image, cE , is greater
than the ground truth count, cGT , the loss function
LT (Θ) = Ll1(Θ) will be used instead.

We adopt a binary mask, M , to determine the
under-estimated crowd regions which are close to the
vanishing point of an image, where:

MIi = 1[Y GT
Ii

>αIi
] (4)

The indicator function 1[·] returns 1 when the value of

ground truth density map, Y GT , is greater than the
average density per pixel in an image, α. The average
density per pixel in an image, α, in this work, is defined
as the number of individuals per foreground (i.e crowd)
pixels, where λ is a parameter.

αIi = λ
cGTIi

PIi −
∥∥∥1[Y GT

Ii
=0]

∥∥∥
1

(5)

The loss function, LT is optimized by backpropagat-
ing the network via stochastic gradient descent (SGD).
Minimizing the loss function serves to improve network
training with the aim that each kernel filter is adaptive
to the large scale and perspective variation of individ-
uals in crowd images.

3.2 Model Settings and Architecture

In all the experiments, the CNN architecture pro-
posed by Li et al. [10] serves as the base architecture
of our work. Note that however, our novel loss function
is not limited to any particular base CNN. We empir-
ically set the parameter λ = 5. We do not use any
data augmentation in data preparation phase. During
training, the batch size is set to 1. Implementation of
the proposed framework and its training are based on
the PyTorch framework.

4 Experimental Results

Evaluation on the propose novel loss function for
crowd density estimation are conducted on two chal-
lenging benchmark datasets: ShanghaiTech [21] and
UCF-QNRF [7]. The ground truth count for images in
each dataset has been provided by the respective au-
thors. Each individual in the images is manually anno-
tated where each head position is marked. The crowd
images vary in terms of perspective, illumination, res-
olution and physical layout of the environment. Most



importantly, there is a large range of crowd density
between images making these dataset challenging to
achieve accurate density estimation.

Similar with existing approaches [17, 21, 22, 10], the
performance of the novel loss function on crowd den-
sity estimation are evaluated by accessing the similarity
between the actual count and the estimated count of
individuals in a scene. Specifically, we use Mean Abso-
lute Error (MAE) and Mean Squared Error (MSE):

MAE =
1

M

M∑
j=1

|cEIj − c
GT
Ij | (6)

MSE =

√√√√ 1

M

M∑
j=1

(cEIj − c
GT
Ij

)2 (7)

where M is the number of test images. MAE is a
measure of the accuracy of the estimated crowd count
across the test images, whereas MSE is used to indicate
the robustness of the estimated count.

4.1 ShanghaiTech Dataset

ShanghaiTech dataset [21] is a crowd counting
dataset containing 1, 198 annotated images with a to-
tal of 330, 165 individuals. There are two parts in this
dataset: Part A & B which consist of 482 and 716 im-
ages, respectively. Only the images in Part A contains
high-density crowd scenes with the number of individ-
uals ranges between 33 and 3, 319. The number of in-
dividuals in Part B ranges between 9 and 578. Images
in Part A were crawled from the Internet, while images
in Part B are surveillance footages taken from a busy
street of metropolitan areas in Shanghai.

Consistent with [21], Part A is partitioned into
chunk of 300 images for training and 182 images for
testing. Similarly, Part B is partitioned into chunk
of 400 images for training and 316 images for test-
ing. The comparisons on the ShanghaiTech dataset
are presented in Table 1. The proposed method signifi-
cantly outperforms existing state-of-the-art approaches
both in MAE and MSE. The improvement of the MAE
and MSE alludes that penalizing the error count from
crowd regions close to the vanishing point is significant
for density estimation.

Evaluation on crowd images with perspective distor-
tion (as shown in Figure 2 and Figure 3) shows that
our propose approach is able to cope with varying scale
of individuals in the crowd for accurate density estima-
tion. When perspective distortion is less prominent in
the crowd images (as shown in row 3 and 4 of Figure
2), the propose approach also accurately estimate the
number of individuals in the crowd. This demonstrates
the effectiveness of the novel loss function in enhancing
the network training process for better density estima-
tion.

GT = 211 Est. = 209

GT = 583 Est. = 584

GT = 1588 Est. = 1599

GT = 1225 Est. = 1238

Figure 2: Example outputs on ShanghaiTech Part
A dataset. (Left) Crowd images. (Centre) Ground
truth density maps with the respective ground truth
count. (Right) Estimated density map using proposed
approach with the respective estimated count. Best
viewed in colour.

4.2 UCF-QNRF Dataset

UCF-QNRF is a new large-scale crowd counting
dataset consisting of 1, 251, 642 individuals in 1, 535 im-
ages. The average number of individuals in the images
is lower compared to the existing benchmark datasets,
signifying that the images are real crowd scenes cap-
tured in the wild consisting of background clutters such
as sky, buildings, roads and vegetation (see Figure 4).
The average resolution in this dataset (i.e. 2013×2902)
is also the largest compare to existing dataset.

Table 2 summarizes the crowd density estimation
results which demonstrate that the proposed approach
outperforms existing multi-column CNNs approaches.
This shows that the proposed novel loss function can
improve network training. This allows kernel filters to
learn features that are adaptive to the large scale and
perspective variation of individuals in crowd images.
When compare with counting-by-detection approach
[7], our proposed method achieves comparable results.
Given that the average resolution in this dataset is



GT = 513 Est. = 483

GT = 331 Est. = 301

GT = 539 Est. = 446

GT = 71 Est. = 74

Figure 3: Example outputs on ShanghaiTech Part
B dataset. (Left) Crowd images. (Centre) Ground
truth density maps with the respective ground truth
count. (Right) Estimated density map using proposed
approach with the respective estimated count. Best
viewed in colour.

2013 × 2902 where it is feasible for person detection
based methods, the counting-by-detection approach [7]
leverage on person detection count to achieve better
density estimation.

5 Conclusion

In this paper, we proposed a novel loss function
that incorporates the error crowd count from perspec-
tive distorted image to reduce estimation errors. We
showed that crowd regions which are close to the van-
ishing point of perspective distorted images are regions
with highly inaccurate density estimation, i.e. highly
under-estimated. This observation can be embedded
in a loss function which allows filters to learn features
that are adaptive to the scale and perspective variation
of individuals in crowd images. In contrast to the exist-
ing methods that focus on designing multi-column ar-
chitecture, this work focuses on investigating the error
count in perspective distorted crowd images to achieve
lower crowd density estimation error. The proposed

Table 1: Comparative results with state-of-the-art ap-
proaches on ShanghaiTech dataset. The proposed
method significantly outperforms other methods in re-
ducing the MAE and MSE.

Part A Part B

Method MAE MSE MAE MSE

Zhang et. al. [19] 181.8 227.7 32.0 49.8

Marsden et. al. [25] 126.5 173.5 23.8 33.1

Cascaded-MTL [26] 101.3 152.4 20.0 31.1

Switching-CNN [22] 90.4 135.0 21.6 33.4

CP-CNN [23] 73.6 106.4 20.1 30.1

CSRNet [10] 68.2 115.0 10.6 16.0

MCNN [21] 110.2 173.2 26.4 41.3

Proposed Method 65.22 101.22 8.40 10.22

GT = 381 Est. = 399

GT = 3562 Est. = 3147

GT = 402 Est. = 512

Figure 4: Example outputs on UCF-QNRF dataset.
(Left) Crowd images. (Centre) Ground truth density
maps with the respective ground truth count. (Right)
Estimated density map using proposed approach with
the respective estimated count. Best viewed in colour.

loss function is not limited by any particular base CNN.
Extensive comparative evaluations demonstrate that
our proposed method achieves significant improvement
in reducing estimation errors as compared to the state-
of-the-art approaches on the challenging ShanghaiTech
and UCF-QNRF datasets.
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Table 2: Comparative results with state-of-the-art ap-
proaches on UCF-QNRF dataset.

Method MAE MSE

Idrees et al. (2013) [17] 315 508
MCNN [21] 277 426

Encoder-Decoder [27] 270 478
Cascaded-MTL [26] 252 514
Switching-CNN [22] 228 445

Idrees et al. (2018) [7] 132 191
Proposed Method 206 348
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