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Abstract

In the field of action recognition, when and where
an interaction between a human and an object happens
has the potential to be wvalid information in enhanc-
ing action recognition accuracy. Fspecially, in daily
life where each activities are performed in longer time
frame, conventional short term action recognition may
fail to generalize do to the variety of shorter actions
that could take place during the activity. In this paper,
we propose a novel representation of human object in-
teraction called Human-Object Maps (HOMs) for recog-
nition of long term daily activities. HOMs are 2D prob-
ability maps that represents spatio-temporal informa-
tion of human object interaction in a given scene. We
analyzed the effectiveness of HOMs as well as features
relating to the time of the day in daily activity recog-
nition. Since there are no publicly available daily ac-
tivity dataset that depicts daily routines needed for our
task, we have created a new dataset that contains long
term activities. Using this dataset, we confirm that our
method enhances the prediction accuracy of the con-
ventional 3D ResNeXt action recognition method from
86.31% to 97.89%.

1 Introduction

How can humans and robots coexist daily in an en-
vironment? We have seen the upwards trend of smart
home technologies during the past decade ranging from
simple IoT light bulbs to mobile vacuum machines [1].
This popularity is predicted to increase in the follow-
ing years with more devices and robotic assistants be-
ing developed. For smart home technologies to become
better integrated in our daily lives, these devices should
be able to learn from our daily routines and provide ser-
vices to us accordingly. The question arises in how to
make these machines learn from our daily routines.

Daily routines can be thought as activities that are
often times executed around a certain time frame and
may require the person to be at a certain location and
interacting with specific objects. Each activities are
not short, but usually encompass several minutes or
even a few hours. For example, an employee may have
a daily routine of getting to office at 9am, cleaning up
the work space until 10am, working until noon, and so
on. There are many activities a person may do each
day and these activities could vary depending on dif-
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Figure 1: An overview of creating Human-Object
Maps. Given a RGB-D image, depth masks of ob-
jects are estimated using Mask R-CNN and taking a
Hadamard product between the depth frame. The
depth masks are converted into point cloud data and
is transposed to world coordinate. Finally, the point
clouds are post-processed to create a Human-Object
Map.

ferent occasions, which makes tracking and recogniz-
ing daily activities a burdensome task. Also, how one
might perform an activity may vary from person to
person, introducing another challenge of how to gen-
eralize an activity. Due to these technical difficulties,
there have not been many academic studies done in the
area of understanding daily routines. However, a per-
son may exhibit a specific behavior or use a particular
object in each of the scenarios that may become a hint
to recognizing those long term activities.

In recent years, there has been significant works
concentrated on computer vision algorithms which can
predict very short human actions that on the order of a
few seconds. In contrast, we focus on predicting daily
activities that span over a longer period of time. We
feel that these emerging action recognition techniques



could be used for longer activity recognition, but often
times, these activities tend to include several smaller
sub-actions which may hinder the prediction accuracy.
Therefore, there is a need to represent daily routines
into features that will enhance the recognition longer
activities.

Human and object interaction has the potential to
be valid information to recognize long term activities.
In long term activities, it might be better to incor-
porate the information about how human and objects
interacted rather than just using appearance informa-
tion. This is because, due to having various sub-actions
in long term activities, using interaction information
may generalize well to the noise caused by appearance
information.

In our work, we tackle the problem of recognizing
daily activities in a single room. In addition to per-
forming activity recognition on RGB video clips us-
ing conventional action recognition method, we intro-
duce the use of human and object probability maps
called Human-Object Maps (HOMs) for this predic-
tion task. HOMs contains useful features about where
someone might have been during the activity, as well as
what objects they interacted with. These features also
shows how human or objects moved in the given video
data, portraying spatio-temporal information. Also,
we have used time of the day feature for our prediction
task since time information is readily available with the
video clips. For our analysis, we compared the baseline
method of using only video clips with our method of us-
ing HOMs and time features with the video clips. Since
there are no publicly available daily routine datasets,
we have created a dataset which contains annotated
RGB-D videos of daily activities captured from a fixed
camera. We validate our approach by showing that
the use of HOMs and time features with video clips in-
creases prediction accuracy. We further evaluated the
effects of using HOMs and time features by comparing
predictions that only used HOMs and predictions that
used video clips with time features. Our work have
made the following contributions:

e Proposed a novel approach of representing human
and object interaction using probability maps
called Human-Object Maps (HOMs) for represent-
ing daily routines.

e Introduced activity recognition algorithm that used
encoded HOMs features as well as time in addition
to conventional action recognition algorithm.

e Created a daily activity dataset which contains real
life video clips of long term activities and validated
our approach of using HOMs and time features us-
ing this dataset. Improvements are seen by using
our proposed method.

2 Related Works
2.1 Action Recognition

Recently, we have seen ongoing improvements in the
field of action recognition including recognition of daily
activities. Most of these emerging techniques incorpo-
rates machine learning to model a wide range of human
activities [2, 3, 4, 5]. To learn these models, it requires
sufficient amounts of annotated data, which is often
difficult to create from scratch. There are publicly
available large datasets such as the ActivityNet and
Kinetics dataset [6, 7], but in our work, these datasets
are not used due to the fact that each action in these
datasets are video clips that span around a few seconds.
Thus, we created our own set of dataset for daily life
activities containing video clips that target activities
that are done in longer time spans.

Although, many vision based advancements were
made, vision alone may not be sufficient since it is
unclear whether the robot will recognize the activity
based on human behavior, but recognize it based on
the background [8]. In recent years, there has been
strides in incorporating vision data with other modals
such as location and time [2, 9, 10]. In our work, we
feel the use of location and time is critical in recog-
nition of long term activities, and have incorporated
these attributes.

S. Bokhari et al. [11] have conducted studies using
activities that are more long term for activity forecast-
ing. The target activities are similar to our work, but
is focused on human trajectory forecasting rather than
prediction task.

2.2 Action Map

A few novel works have been done on the represen-
tation of human actions called Action Maps [12, 13].
These maps are 2D (or 3D) probability maps which
contains information on where an action did or could
occur. Map representation seems very useful in the ap-
plication of mobile robots since these maps contain lo-
cation information. In our work, we followed this map-
ping technique, but instead of mapping the actions, we
mapped the probability of human and object positions.

2.3 Human Object Interaction

Recent works in human object interaction (HOI)
seem promising for understanding activities based on
how human interacts with the surrounding environ-
ments [14, 15, 16]. For example, G. Gkioxari et al.
introduced a method that detects <human, verb, ob-
ject> triplets from image using only appearance fea-
tures [14]. We feel it is possible to directly infer the long
term actions by keeping track of these smaller human
and object interaction, but it would be cumbersome to
track wide range of small interactions. Therefore, in



our work, we took a step back and mapped 2D loca-
tions of humans and objects using HOMs. With the
use of HOMs, we feel that neural networks would gen-
eralize and recognize key interactions between human
and object and even between object and object.

3 Approach

3.1 Overview

The goal of this work is to predict daily routine ac-
tivities. In a conventional action recognition problem
setting, given RGB video frames, our task is to predict
which action was portrayed throughout those frames.
In our work, we tackle the same problem with long
term daily activities using HOMs and time features
using a dataset we have created for this task, which
is explained in more details in section 4.1. Samples of
what activities we focused on recognizing is shown in
Fig. 4.

In this section, we will explain our approach for this
prediction task. In section 3.2, we will explain HOMs
in detail including how they are created. In section
3.3, we will explain the network architectures for the
proposed method along with baseline and comparison
methods.

3.2 Human-Object Maps

Human-Object Maps (HOMs) are probability maps
of human and objects created from RGB-D video
frames. These maps represent spatio-temporal infor-
mation about humans and objects as well as the inter-
action between them. As shown in Fig. 2b, there are
total of 14 maps, which the labels are: Person, Bot-
tle, Cup, Utensil, Bowl, Chair, Potted Plant, Dining
Table, Laptop, Cell Phone, Microwave, Sink, Refriger-
ator, and Book.

For each RGB and depth frame, we executed the
following steps, which is also shown in Fig. 1:

1. From the RGB image, we use pretrained Mask R-
CNN for object detection [17].

2. For each of the detected object masks, we take a
Hadamard product between the depth image and
the mask and convert the masks into point cloud
representation in the camera coordinate.

3. Then the point clouds are converted to world co-
ordinate using transform matrix which were cal-
culated beforehand.

4. Those point clouds are then reduced into a 2D
map by projecting the points looking down from
the ceiling.

5. The points in the 2D maps are converted into a 2D
histogram of small 10x 10[cm?] grids (as shown in
Fig. 2b).

(a) Sample frame.
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Figure 2: An example of a RGB frame and Human-
Object Maps of ‘Coffee Break’ is shown in (a) and (b)
respectively. Using these maps, human-object interac-
tion information can be easily obtained, such as the
relationship between chairs and human which can rep-
resent ‘sitting’.

6. Finally, by taking the averages, the 2D histogram
is converted into 39x39 pixel image.

Given the number of frames, we took running aver-
ages of the HOMs.

Since there are heatmaps for every objects, the num-
ber of objects to track must be carefully selected before.
If more objects are tracked, the more computation re-
sources for map creation must be set aside.

3.3 Network Model for Activity Recognition

An overview of the network model we have used is
shown in Fig. 3. In our proposed method, we use
RGB-D video frames as input. The RGB frames are
used as the input frames for 3D ResNeXt feature ex-
traction module. The 3D ResNeXt feature extraction
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Figure 3: An overview of our network model. 3D
ResNeXt takes RGB video frames as input and extracts
viable features. The HOM encoder network outputs
feature vectors from created HOMs. The feature vec-
tors from all of the modules, including time feature,
are concatenated into a single feature vector which is
passed though the fully connected layers to output a
prediction.
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module has a depth of 101 and was pretrained using
action recognition datasets (ActivityNet and Kinetics
[6, 7]). The motivation for using 3D ResNeXt as our
feature extraction network was that in recent works,
this network architecture has the highest accuracy in
action recognition methods that use only RGB frames
as inputs [5]. We also use the RGB and depth frame
to create HOMSs, which are then encoded into feature
vector using 3 layers of convolutional neural networks.
As for the time of the day feature, we convert time,
which is given as ISO format, into continuous value
normalized between 0 and 1. The feature vectors from
3D ResNeXt, HOM encoder, and time conversion are
then concatenated into one feature vector and is passed
though several fully connected layers (FCs) to obtain
our prediction.

We turned off the HOM encoder and time conver-
sion for the baseline method of only using video RGB
frames. For our comparison methods of using video
frames with HOMs, using video frames with time, and
using only HOMs, we have turned off the network re-
spectively and only concatenated the needed features.

4 Experiments
4.1 Dataset

For our work, since there are no publicly available
datasets for the task of recognizing daily routine activ-
ities, we have created our own dataset to evaluate our
approach. We used a Intel® RealSense™ D415 sen-
sor to take RGB-D video frames of the daily activities
[18]. The activities we have tracked and the number
of clips as well as the number of total frames are given
in Table. 1. As for our method of gathering data, we
took video clips of daily life in our lab from 9:00 to
20:00. Afterwards, we selected several segments from
the video clips and annotated what activity the clip
portrays and the time of which the activity occurred.

Table 1: Summary of the daily activity dataset. For
each Activity, we show the number of clips and the
total number of frames.

Activity Clips  Frames
Coffee Break 15 9,752
Cooking 11 7,857
Meal Time 15 9,954
Meeting 19 12,511

Nap 8 5,687
Tending to Plants 8 5,001
Working 13 9,204

Total Clips: 89

Total Frames: 60,466

Table 2: Activity prediction accuracy.

Accuracy

Video Ouly (3D ResNeXt [5]) 86.31%
Video with HOMs 86.31%
Video with Time 89.49%
HOMs Only 91.58%

Video with HOMs and Time 97.89%

A time-line of the dataset with sample frames of each
activity is shown in Fig. 4.

For evaluating our method, we split the dataset into
training and test sets which contain 68 and 21 clips
respectively.

4.2 Recognition Performance

As stated before in section 3.3, we have compared
the following methods:

e Only RGB video frames (we call this method ‘video
only’)

e RGB video frames with HOMs and time features
e RGB video frames with HOMs features

RGB video frames with time features

Only HOMs features

For training, we trained each method separately un-
til convergence using the training split in our dataset.
We have used stochastic gradient decent as our opti-
mizer and learning rate of 0.01 which is annealed using
a learning rate scheduler. Most of the training pa-
rameters are the same as training the 3D ResNeXt [5].
Out of the 68 training data, we have used image aug-
mentation for training. The input for 3D ResNeXt is
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Figure 4: A time-line of when the activities in our dataset occurred with sample frames of each of the activity.

16 frames, thus we sampled 16 frames using temporal
augmentation. The HOM images are created using the
same 16 frames.

For evaluation of our method, we split the test-
ing split into even smaller test dataset and calculated
the classification accuracy based on evaluation metrics
used in action recognition [5]. Even though it is a
smaller test dataset, the frames are selected so that it
encompasses the whole video clip. We have not added
any image augmentation, but have selected every M
frames instead of random sampling. For example, if
there are total of N frames in a test clip, we would
sample, 1st frame, then N/16th frame, 2N/16th frame,
and so on until we obtain 16 frames. The prediction
results is shown in Table. 2.

We have also included confusion matrices of the
comparison methods in Fig. 5 for analysis of the ef-
fects of the proposed features.

5 Discussion

By taking a look at the results in section 4.2, our
proposed method has higher prediction accuracy than
the baseline method of using only using 3D ResNeXt by
around 11%. Even more, our proposed method surpass
all of the comparison methods as well. This proves our
presumption of the use of location information as well
as time enhances the action recognition accuracy. Tak-
ing a look at 5e, the model failed to recognize the ac-
tivity, ‘tending to plants’, and mistook it for ‘cooking’,
which was the only failure it had made. The same mis-
takes were made with the other comparison methods,
which means the sample was very hard to recognize.

However, to our surprise, even though the method
that used only HOM features surpassed the baseline,
the method that used video with HOM features had
the same accuracy as the baseline method. Despite
having visual and location information to better un-
derstand what is happening in a scene, the opposite
can be seen by taking a look at Fig. 5a and Fig. 5b.
For example, ‘Cooking’ and ‘Tending to Plants‘ shows
very close visual features due to the fact that a person
doing the activity are usually around the sink or the
potted plant (shown in sample images in Fig. 4), which

is a similar trend that can be seen in HOMs as well.
Even though in video only and HOMs only predictions
those methods could classify the two as different activ-
ities, when the two methods are combined, the visual
location and HOM’s 2D location feature may have been
strengthened, which results in high prediction fail rates
in activities that relates to location information instead
of understanding human-object interaction.

From Fig. 5d, we can also conclude that time alone
is not as effective in increasing the accuracy. This can
be explained from Fig. 4 in how much each activities
overlap with each other.

6 Conclusion

We have proposed a novel representation of human
and object interaction using probability maps called
Human-Object Maps for the use of recognizing daily
routines. These maps are location based probability
maps, thus for our next step, we would like to inves-
tigate the use of these maps for robot navigation and
human computer interactions. In addition to the new
representation, we have used HOMs as features for en-
hancing conventional action recognition algorithm for
predicting long term daily activities. To validate our
proposed method, we have proposed a new daily ac-
tivity dataset, which consists of real human data in
long term activities. Since our goal for this research
was to recognize action in a particular scene, in our fu-
ture work, we will enlarge the dataset to include more
variety of activity classes in variety of scenes.
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