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Abstract

Realistic estimation and synthesis of articulated human motion must satisfy anatomical constraints on joint angles. A
data-driven approach is used to learn human joint limits from 3D motion capture datasets. We represent joint
constraints with a new formulation (s1, s2, τ) using swing-twist representation in exponential maps form. Our
parameterization is applied on Human3.6M dataset to create the lookup-map for each joint. These maps enable us to
generate ‘synthetic’ datasets in entire joint rotation space of a given joint. A set of neural network discriminators is
then trained with synthetic datasets to learn valid/invalid joint rotations. The discriminators achieve accuracy of
[ 94.4 − 99.4%] for different joints. We validate precision-accuracy trade-off of discriminators and qualitatively evaluate
classified poses with an interactive tool. The learned discriminators can be used as ‘priors’ for human pose estimation
and motion synthesis.
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1 Introduction
3D human pose estimation from monocular images using
kinematic models [1–3] has produced state of art robust
results compared to direct 2D-to-3D regression models
[4, 5]. An enormous collection of human motion capture
(mocap) datasets are now publicly available to train deep
neural networks. Recently, [6] has even employed a syn-
thetic human motion dataset for better training of deep
neural networks. But, the synthesis of realistic human
motion for long run is an open problem [7].
Often, a ‘penalty term’ is used for exceeding joint limits,

but these joint limits are worked out from a limited dataset
[8, 9]. To the best of our knowledge, no recent attempt
has been reported to obtain more realistic and statistically
valid joint limits from publicly available mocap datasets.
The artifacts and outliers in the mocap data can be

pruned using joint constraints inferred directly from
respective datasets. The imposition of accurate joint con-
straints as priors is valuable for realistic 3D human pose
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estimation and motion synthesis. A data-driven learning
of joint constraints from mocap datasets is a challeng-
ing task. The presence of outliers and voids due to sparse
data makes it imperative to choose a representation of
joint space, which is robust to such artifacts. Moreover,
the instances of class representing invalid joint rotations
are missing in existing motion capture datasets. One-
class learning on these dataset, using positive-unlabelled
(PU) algorithms has associated challenges. Instead, we
synthesize both valid and invalid samples for balanced
learning.
The main contributions of our paper are (i) set of neural

network discriminators to classify valid and invalid rota-
tions for different joints (ii) a new formulation of swing-
twist(s1, s2, τ) representation to represent joint rotations
(iii) discretized look-up map based on above parameteri-
zation to synthesize labels in a given joint space.
The overview of the current work for the left shoulder

joint is depicted in the Fig. 1. Our three-parameter rep-
resentation is unambiguous and free of anomalies, which
makes it easier to learn a joint rotation manifold. Thus,
neural network discriminators trained on our represen-
tation yield good accuracy and qualitative precision with
very few parameters.
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Fig. 1 The joint angles (left shoulder) from motion capture datasets are transformed into (s1, s2, τ) swing-twist representation. Synthetic dataset is
generated to train neural network discriminators (using look-up maps not shown in figure). Discriminator network learns joint constraints to classify
valid/invalid joint rotations

2 Related works
The joint constraints are dependent on the choice
of representation for joint rotations. A straightforward
approach to apply joint constraints in terms of Euler
angles is to assume minimum and maximum limits on
each angle (box-model) [10]. However, this approach is
too crude to capture realistic anatomical joint limits. Euler
angles representation also leads to discontiguous cluster
of valid poses in joint space and often causes the prob-
lem of Gimbal lock [11]. Due to these limitations, the joint
limits based on box model are not optimal choice. The
swing-twist representation in [11–14] of joint rotation is
devised to efficiently classify validity of a joint rotation.
However, interdependence of swing and twist (intra-joint
dependence) has not been satisfactorily addressed in ear-
lier works.
In a data-driven approach, Herda et al. [15] has pro-

posed a parameterization in terms of an implicit surface
on joint trajectory data in quaternion space. The authors
extend their method to deal with inter-joint dependen-
cies1, but it is computationally expensive and is not intu-
itive to interpret the joint limits. Further, the imposed
limits are directly on captured data, which might lead
to unrealistic limits especially in the presence of voids
and sparse mocap data. Also, only the vector part (sin θ)

of quaternion is used in [15] to represent joint limits. It
clearly ignores information in scalar part (cos θ) leading to
ambiguity in rotation angle of joint. The quaternion also
has dual representation (+q and −q) for a given joint rota-
tion. A preprocessing step is often necessary over motion
trajectory to mitigate the effects of duality.
Recently, Akhter et al. [9] learned pose-conditioned

joint angle limits of trained gymnasts and athletes from a
more controlled mocap dataset. Their work encodes only
swing of a body segment in a discretized binary occupancy
map. The occupancy map is defined using local spherical
coordinates of the joint on a unit sphere. A table-look-up
function for validity of pose is conditioned for every child

joint based on its immediate parent in a kinematic chain
while ignoring the intra-joint dependency1.
Aforementioned limitations of previous works form the

motivation of our research. We use an exponential map
parameterization instead to represent joint rotations in
present work. The exponential map representation avoid
singularities as well as non-contiguous clusters [10]. It also
avoids the duality problem in representation as described
earlier.
We derive our joint constraints using more comprehen-

sive Human 3.6 Million(H36M) dataset [16]. To overcome
the limitation of intra-joint dependency, an additional
parameter representing twist is learned. We encode lower
and upper bounds of twist τ around a joint axis on occu-
pancy map for a given swing(s1, s2).

3 Proposedmethodology
The constraints of a 3D human joint rotation for rou-
tine activities are learned by using Human3.6M (H36M)
dataset [16]. Our joint constraints parameterization is
based on swing-twist formulation. Initially, we decom-
pose the joint rotation (expressed in quaternion form) into
swing and twist parts. Later, we express each of the swing
and twist in exponential map and arrive at (s1, s2, τ).
In comparison, Akhter et al. [9] learn joint rotation

constraints from a motion capture dataset based on
extreme range of joint movements. Moreover, they ignore
twist around axis as they parameterize joint rotation
from local 3D Cartesian coordinates to the spherical
coordinates(φ, θ) representing swing of body segment. In
current work, we compare our joint limits (swing part)
derived from a range of normal activities performed by
human subjects (in H36M) with extreme range limits
provided by [9].

3.1 Swing-twist decomposition
The decomposition of joint rotation into orthogonal com-
ponents, i.e., swing and twist is achieved by defining the
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twist w.r.t an axis of intrinsic (rotated) frame of reference.
For example, if y-axis of reference frame is aligned with
child limb, the swing-twist decomposition of a rotation in
terms of quaternions is expressed in the following way:
The quaternion q := (qs, qx, qy, qz) can be decomposed
as qtwist ∗ qswing, where qtwist := (cy, 0, sy, 0), qswing :=
(czx, sx, 0, sz). Using the norm constraint of unit quater-
nion and following [13] we obtain,

cy =
⎛
⎜⎝ qs√

q2s + q2y

⎞
⎟⎠ , sy =

⎛
⎜⎝ qy√

q2s + q2y

⎞
⎟⎠ , czx =

⎛
⎜⎝

(q2s + q2y)√
q2s + q2y

⎞
⎟⎠

sx =
⎛
⎜⎝ (qs · qx − qy · qz)√

q2s + q2y

⎞
⎟⎠ , sz =

⎛
⎜⎝ (qs · qz + qx · qy)√

q2s + q2y

⎞
⎟⎠

(1)

Then, we introduce ηtwist := (0, τ , 0) and ηswing :=
(s1, 0, s2) as respective exponential map counter-parts,
and get,

τ = 2 · arctan
( sy
cy

)
,

s1 = 2 · arctan
(√

s2x + s2z
czx

)
· sx√

s2x + s2z
,

s2 = 2 · arctan
(√

s2x + s2z
czx

)
· sz√

s2x + s2z

(2)

Using the Eq. (2), we get swing components (s1, s2) and the
twist component τ of a joint rotation in exponential map.
This representation is convenient as it (i) is unambiguous
(no duality), (ii) avoids non-contiguous regions/jumps in
joint trajectory, and (iii) requires no additional constraints
like unit norm. Compared with swing-twist decomposi-
tion in quaternion form [13], it requires less parameters
(3 parameters in ηtwist, ηswing versus 5 in qtwist and qswing).
Consequently, it provides optimal joint representation for
learning valid/invalid poses.

4 Implementation
The Euler angle representation of joint angles in H36M
and [9] dataset are transformed into (s1, s2, τ) represen-
tation, as described in previous section. The resulting
joint rotation space is continuous, contiguous and well-
behaved for discriminative learning (Fig. 2).
It is found that considerable outliers are present in

mocap dataset provided by Akhter et al. [9]. For instance,
left and right knee flexion of all subjects performing var-
ious activities is shown in Fig. 3. It clearly shows an
impractical knee extension (upward) of up to – 20◦ for
certainmotion sequences in dataset. Moreover, we believe
that limited set of mocap data of [9] is not enough to learn
inter-joint dependency, i.e., insufficient instances of swing

of the child limb exists conditioned upon a prior swing of
parent limb.
The comparison of swing limits for right hip joint (right

up leg) from both datasets in swing space (s1, s2) is illus-
trated in Fig. 2. The swing limits obtained using H36M
although more restrictive but are true representative of
human motion involved in routine activities. Also, these
limits lie well within the extreme range of motion of [9].
Therefore, we restrict our learning only to H36M dataset.

4.1 Look-upmaps for synthetic dataset
LetM be the set of all samples of H36M dataset for joint J,
represented in (s1, s2, τ) space . We define a 2D grid

(
si, sj

)
on swing subspace, where si, sj ∈ {− 180, . . . , 180} and a
discrete mapping as follows

Ds(s1, s2) :=
⎧⎨
⎩

(
si, sj

)
iff s1 ∈[ si, si+1]
and s2 ∈[ sj, sj+1]

undefined otherwise
(3)

Now for each grid square
(
si, sj

)
, if at least one mocap

sample ∈ M lies in it, we term it as valid swing bin. The
discretized swing occupancy map is thus defined by

Os
(
si, sj

)
:=

⎧⎨
⎩
1 iff ∃ (s1, s2, τ) ∈ M

such that Ds(s1, s2) = (
si, sj

)
0 otherwise

(4)

With each valid occupancy bin, we further associate
minimum and maximum bounds of τ , based on all the
instances of mocap data occuring in that bin

Lt
(
si, sj

)
:=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[ τmin, τmax] ∀ (s1, s2, τ) ∈ M

s.t.Os
(
si, sj

) = 1,
τmin = inf(τ ) and
τmax = sup(τ )

undefined otherwise

(5)

In order to obtain smooth twist angle bounds, we apply
3 × 3 Gaussian kernel(s) on (s1, s2, τmin) and (s1, s2, τmax)
surfaces. Now given any (s1, s2, τ), we define a validity
function in the following way

isValid(s1, s2, τ) =

⎧⎪⎪⎨
⎪⎪⎩

1 iff Os ◦ Ds(s1, s2) = 1
and τ ∈[ τmin, τmax] ,
[ τmin, τmax]= Lt ◦ Ds(s1, s2)

0 otherwise
(6)

We generate synthetic ground truth of labeled samples
in (s1, s2, τ) space of a joint J by uniform random sampling
on s1, s2, τ ∈[− 180, 180] and using isValid() function
defined in Eq. 6.

4.2 Training discriminators
A large portion is occupied by invalid instances in com-
plete joint rotation space (for any given joint). Therefore,
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Fig. 2 The comparison of right hip joint’s range of swing present in H36M [16] and Akhter et al. [9] dataset

the sets representing valid and invalid classes are imbal-
anced. We perform random sampling of valid and invalid
instances to obtain 25%/75% sets respectively. The sam-
pled sets are equally spaced ‘labeled’ training instances in
entire joint space. An example of such sampled joint space
for right hip joint (right up leg) is as shown in Fig. 4.
A balanced (50%/50%) subset is selected from these

sampled valid/invalid instances using random sampling.

The subset is again divided into training, validation,
and test samples in a ratio (70%, 15%, 15%). For com-
parison, we also tested over-sampling of valid class and
under-sampling of invalid class to obtain balanced sub-
set independently. However, the sampling proposed above
leads to least variation of performance, when evaluation
is performed on multiple test sets. The neural network
discriminator are trained for each joint, using an equal
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Fig. 3 The knee joint rotation anomalies in Akhter et al. dataset [9]. Flexion is positive and extension is negative knee joint angle
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Fig. 4 Generated synthetic dataset for right hip joint with valid (green) and invalid (red) samples

number of valid/invalid instances in each batch. We train
an ensemble of 20 discriminators for each joint to evaluate
performance.
We also qualitatively evaluate the ability of neural

network to discriminate valid/invalid joint rotations by
means of an interactive validation tool. The tool also helps
us to ascertain any anomalous examples found in motion
capture datasets contradictory to the learned joint limits.

5 Results and discussion
The learning of a smooth implicit function by neural
network represents the valid range of rotation for a spe-
cific joint, i.e, valid swing and twist component of joint
rotation.
We achieve over 95% accuracy (on all joints discrimi-

nators) using only one hidden layer in a fully connected
neural network (FCN) (results are shown in Table 1). The
table reports the result obtained for best among 20 classi-
fier trained for each joint. The number of optimal hidden
nodes obtaining best result is also reported for each joint
in Table 1. A choice of 4, 8, 16, and 32 hidden nodes is
tested. The optimal number of hidden nodes is decided
when performance plateau is reached. The network with
eight hidden nodes is found optimal for most of the joints.
In our view, this is only feasible due to our choice of

joint rotation parameterization, which is free of ambigu-
ities and discontinuities over the joint rotation manifold.
The discretization scheme proposed on swing map (s1, s2)
for complete range of τ rotation is also more intuitive.
It avoids the limitations mentioned by [15] in his earlier
work on quaternion-based joint limits. The representa-
tion of joint manifold in quaternion space and Euler angle
space is further highlighted in Figs. 5 and 6 respectively.

The anomalies of both representations can be noted ver-
sus our proposed representation shown in Fig. 4. The dis-
cretization of joint space in quaternion and Euler angles to
label invalid region is not straightforward as evident from
these figures. Therefore, no further analysis is offered in
this paper.
The output of discriminator also shows that learning is

smooth and effectively accounts for outliers in the data.
The corresponding outliers in synthetic dataset which are
learned as invalid by discriminator are shown in Fig. 7.

Table 1 The joint discriminator networks classification accuracy
on synthetic datasets of respective joint rotations

Joint name [16] Accuracy (%) False
positive
(%)

False
negative
(%)

Optimal
hidden
layer

Right up leg 98.7 0.3 1.0 8

Right foot 97.7 1 1.3 8

Left up leg 98.9 0.3 0.8 8

Left foot 98.2 0.6 1.2 8

Spine 99.4 0.1 0.5 16

Spine1 99.4 0 0.6 16

Neck 94.4 2.3 3.3 8

Head 97.7 0.9 1.4 8

Left shoulder 97.9 0.7 1.5 16

Left arm 96.8 0.5 2.7 8

Left hand 94.7 2.1 3.3 8

Right shoulder 95.1 1.5 3.3 16

Right arm 95.5 1.63 2.9 8

Right hand 95 2 3 8
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Fig. 5 Quaternion (vector part) joint rotation space of right hip (right-up-leg) used by Herda et al.[15] shows duality of valid joint rotation. Anti-podal
points + q and − q in the cluster represent same rotation

However, the accuracy on ‘synthetic’ ground truth is not
an absolute figure of merit, due to voids and sparse data.
Hence, the precision of joint rotation classification in a
given pose is further evaluated qualitatively using an inter-
active tool. The output of our interactive pose validation
tool is as depicted in Fig. 8. There was no improve-
ment found in precision (vs accuracy trade-off ) as well
with further increase in number of neurons or hidden

layers for joint discriminators. As a pilot study, we per-
form only limited qualitative tests to check veracity of
our method. The detailed evaluation with multiple partic-
ipants to validate synthetic invalid poses and evaluate dis-
criminator performance will be undertaken in extended
work.
The intra-joint (parent-child) dependency of range of

rotation in a hierarchy of joints [9, 15] is implicitly learned

Fig. 6 The artifacts in Euler angle space of right hip (right-up-leg) shows non-contiguous clusters of valid joint rotation. The boundary jumps at 180◦
(for Z and X) and 90◦ for Y rotation can also be seen
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Fig. 7 Discriminator network output of valid left shoulder joint rotations in (s1, s2, τ) space

in our approach. Our approach emphasizes the coupling
of parent-child arising from twist itself. For example, a
constraint on the twist of upper limb avoids unrealistic
pose of the lower limb by twist propagation along the kine-
matic chain. Thus, presented with any (s1, s2, τ) param-
eterized joint rotation, our trained neural network(s) are
able to decide for the valid or invalid joints independently.
The Table 2 shows a discriminative comparison matrix

on test poses of left shoulder using Akhter et al. [9] and our

trained network. All poses classified as valid by our net-
work are also found valid by [9]. However, since [9] does
not take into account twist, the joint rotations classified as
invalid by our network on account of twist are still valid in
[9]. Figure 9 further highlights that Akhter et al. isValid()
function allows unrealistic swing of left shoulder as almost
whole (90%) of swing space is classified as valid. On the
contrary, valid region in swing space learned by our dis-
criminator is more plausible. These two factors account
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Fig. 8 Interactive validation tool output showing invalid left arm poses (in red) and valid left arm poses (in green)
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Fig. 9 The valid left shoulder joint rotation of (i) trained discriminators output (green), (ii) Akhter et al. dataset (blue) [9], and (iii) synthetic dataset
(magenta)

for high instances (36.65%) of left shoulder poses classi-
fied as invalid by our network while still being classified as
valid by [9] in Table 2.

6 Conclusion
The articulated movement of human body is constrained
by the limits on 3D joint rotations. We present a formu-
lation of swing and twist components of joint rotations
in exponential maps to learn joint limits by data-driven
approach. Our representation is used to encode valid
poses in an intuitive and physically meaningful way. A
discretized look-up map is derived to label valid/invalid
rotations in parametrized joint space. And we train a set of
neural network discriminators to classify valid and invalid
rotations for different joints. Our trained discriminators
used as priors will lead to accurate learning of 3D human
pose estimation and motion synthesis. The learned joint
constraints are useful to represent normal range of human
motion especially vital for social affordance applications
like vision-based human-robot interaction. Data-driven
Table 2 Comparison of classification results between learned
discriminator (ours) and Akhter et al. [9] on generated left
shoulder synthetic dataset

Akhter et.al

Valid Invalid

Ours Valid 99.92% 0.08%

Invalid 36.65% 63.35%

approach also provides meaningful limits to monitor the
rehabilitation of patient’s with joint injuries. Since the
learning is performed using a data-driven approach, the
quality of learned constraints depends on the range of
motion available in the mocap data. Therefore, we would
be extending the current method by capturing more
data and using other publicly available motion capture
datasets. Our visualization tool can guide collection of
motion data close to constraints. A more comprehensive
qualitative study to validate synthetic invalid poses with
the help of human evaluation would also result in better
ground truth generation.

Endnote
1 Inter-joint dependency is defined between the parent

joint and the subsequent children joint angles in a kine-
matic chain, while intra-joint dependency exists between
swing and twist of the same joint.
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