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Abstract

Eye contact (mutual gaze) is fundamental for hu-
man communication and social interactions; therefore,
it is studied in many fields. To support the study of
eye contact, much effort has been made to develop au-
tomated eye-contact detection using image recognition
techniques. In recent years, convolutional neural net-
work (CNN) based eye-contact detection techniques are
becoming popular due to their performance; however,
they mainly use single frame for recognition. Eye con-
tact is a human communication behavior, so temporal
information, such as temporal eye images and facial
poses, is important to increase the accuracy of eye-
contact detection. We incorporate temporal informa-
tion into eye-contact detection by using temporal neural
network structures that combine CNNs and long short-
term memory (LSTM). We tested several network com-
binations of CNNs and LSTM and found the best solu-
tion that uses the outputs of CNNs as well as the cell
state vectors of LSTM in the fully connected layers.
We prepared two types of eye contact video datasets.
One dataset is based on online videos, and the other
was taken by a first-person camera in assumed conver-
sational scenarios. The results show that our method
is better than the approaches that use single frames.
Namely, our method performs 0.8781, while the exist-
ing method (DeepEC) performed 0.8319, in F1-score.

1 Introduction

Eye contact (mutual gaze) is a fundamental part of
human communication and social interaction. In psy-
chology, the ‘eye-contact effect’ is the phenomenon in
which perceived eye contact with another human face
affects certain aspects of the concurrent and/or imme-
diately following cognitive processing [1]. Thus, eye
contact greatly affects human behaviour in areas such
as affective perceptions [2], social interactions [3] and
development [4]. Eye contact is also used in medicine,
such as in the diagnosis of autism spectrum disorders
(ASDs) [5]. In dementia nursing, making appropriate
eye contact is an important skill for communicating
with patients [6, 7]. Our research mainly focuses on the

nursing scenario, particularly on evaluating humane-
care nursing skills for dementia by examining facial
communication behaviours between caregivers and pa-
tients, such as the number of eye contact events and
the relative facial positions and distances between care-
giver and care receiver [8]. To enable such evaluation,
we aim to develop a wearable care-skill evaluation sys-
tem that gives care-skill scores and advice to users as
feedback (Figure 2). To this end, we develop a system
of automated eye-contact detection for caregiving using
first-person videos (FPVs) taken using head-mounted
cameras worn by caregivers(Figure 1).

Figure 1. Several scenes and first person views in
an experiment of the skill analysis of the dementia
nursing (Humanitude) using a simulated patient.
In dementia nursing, skilled caregivers approach
their faces close to the patients while making eye
contacts.

Several efforts have been made to develop auto-
mated eye-contact detection using image-recognition
techniques. Smith et al. [9] proposed an algorithm to
detect gaze-locking (looking at a camera) faces using
eye appearances and PCA+MDA. Ye et al. developed
a pioneering algorithm that detects mutual eye gaze
using wearable glasses [10, 11]. Petric et al. developed
an eye-contact-detection algorithm that uses facial im-
ages taken with a camera embedded in a robot’s eyes
[12] to develop robot-assisted ASD-diagnosis systems.

In recent years, deep-learning-based approaches are
being implemented for eye-contact detection. Mit-
suzumi et al. developed the DNN-based eye contact de-
teciton algorithm (DeepEC)[13] that uses only cropped
eye regions for eye-contact detection and performed
better than existing methods. Eunji et al. develop the
DNN-based PiCNN detector that accepts the facial re-
gion and output both facial postures and eye contact
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Figure 2. Conceptual illustration of our care-skill
evaluation system. A caregiver wears a camera
system and obtain FPV while care is given. From
the video, the number of eye contact events, facial
distances and facial postures between the care-
giver and care receiver are obtained and used to
evaluate the caregiver’s care skills. The evalua-
tion is given to the caregiver as feedback.

Q1 Are these eyes making eye contact?

(a)

(b)

(c)

(d)

Eye contact inquiry

Figure 3. Preliminary experiment to examine eye-
contact-detection performance of humans and
DNNs. (a) 13 subjects answered a web form that
asked whether cropped eye images taken from fa-
cial images showed eye contact or not. The rate of
correct answers for human respondents was only
74% on average and 80% maximum, though the
DNN (DeepEC) was correct 86% of the time. (b)
- (d) Examples of positive (eye contact) images.
The average correct answer rates for human re-
spondents were (b) 46%, (c) 15% and (d) 7%.

states [14]. Zhang et al. presented an eye-contact de-
tection algorithm based on their deep neural network
(DNN) based gaze estimations [15]. This method de-
tects and collects the facial region and gaze direction
of other subjects from a FPV and finds eye contact by
clustering the gaze directions. The eye contact detecter
is construbted by using the clustered eye images.

However, most of the previous methods did not suf-
ficiently consider temporal features of eye contact. Eye
contact is a human communication behaviour, so tem-
poral inference is important for increasing recognition
accuracy. The pose-dependent eye contact (PEEC) al-
gorithm [10, 11] used conditional random fields (CRF)
for temporal inference; specifically, it applied the re-
sults of single-frame eye-contact detection, which con-
sist of random forests, to CRF and obtained the results.
However, the results of single-frame eye-contact detec-
tion are binary outputs (eye contact or aversion); thus,
this algorithm could not consider the temporal corre-

lation of eye images or facial positions for eye contact
detection.

The limitations of single-frame recognition are also
suggested by our preliminary experiment, in which we
presented 50 cropped eye images to 13 subjects and
asked whether the images showed eye contact or aver-
sion (Figure 3). Surprisingly, the rate of correct an-
swers for human respondents was only 74% on average
and 80% maximum, while that of the DNN (DeepEC)
was 86%. This finding supports the idea that we rec-
ognize eye contact not only by single eye-image frames,
but also by temporal information, such as temporal eye
and facial images and body posture.

To prove this idea, we developed several temporal
DNN architectures that use long short-term memory
(LSTM) and two eye-contact video datasets. The first
dataset was obtained from YouTube videos in which a
subject is talking to a camera, and the second dataset
was the FPVs we obtained with assumed conversa-
tional scenarios. For each video, we manually anno-
tated the eye-contact state frame by frame. The results
indicate that out algorithm, which combines a single-
frame eye contact detection algorithm (DeepEC) with
temporal inference (LSTM), performs better than ex-
isting methods. Our main contributions are as follows.

1. We developed an eye-contact-detection algorithm
that considers temporal information. We implemented
several combinations of network architectures as well
as temporal durations and found the best solution,
which combines the CNN (DeepEC) and the cell state
of LSTM with fully connected layers at the end of the
network.

2. We prepared two eye-contact facial-image
datasets. One is based on publicly available videos,
and the other is a set of FPVs that assume conversa-
tional scenarios. We annotated the eye-contact states
frame by frame and published the annotation results.

3. The results show that temporal inference im-
proves detection performance, particularity for the
recall performance. Also, we found proposed algo-
rithm that combines CNN+LSTM is far better than
CNN+CRF.

We describe the current and proposed algorithms in
Section 2. We introduce the two datasets in Section
3, followed by the experimental results, discussion and
conclusion in Sections 4 - 5.

2 Algorithms

We implemented our two algorithms that use a
LSTM as well as DeepEC and compared their perfor-
mance, as illustrated in Figure 4.

2.1 Single-frame eye-contact-detection algo-
rithm: DeepEC

The DeepEC algorithm [13] (Figure 4(a)) first de-
tects both eye regions in the target image frame us-



ing a facial-parts detector. Then, the resulting pair
of eye images are separately input to two streams of
seven-layer CNNs followed by two fully connected lay-
ers. The DeepEC has two variations: Näıve DeepEC,
which uses only eye images, and DeepEC-HP, which
uses the 3D facial position as well as eye images. In
their original publication[13], Näıve DeepEC produced
better results than DeepEC-HP, with Näıve DeepEC
performing about 0.76 and 0.80 in precision and F1

score, respectively, using publicly available facial-image
datasets.

In addition, we implemented an extension of
DeepEC named DEEPEC+CRF which can conduct
tempral eye-contact detection by using Conditional
Random Field(CRF) in order to compare with our pro-
posal algorithm in point of temporal learning. The
CRF inputs sequence of binary outputs of DeepEC and
learns its temporal dependency.

2.2 Spatio-temporal eye-contact-detection algo-
rithms: TempEC and TempEC-HP

We implemented eye-contact-detection algorithms
that use spatio-temporal images of eyes by combining
CNNs and LSTM. Our algorithms use a series of eye
images obtained from continuous image frames of video
datasets as input, in contrast to DeepEC, which uses
only single eye images.

We developed and evaluated two architectures:
TempEC, which uses only eye images, and TempEC-
HP, which uses the 3D facial pose as well as eye images,
as illustrated in Figure 4(b). These algorithms consist
of the following components.

2.2.1 Eye region detection

To obtain eye images, we first obtain facial land-
marks with face detection and shape prediction. In our
implementation, we use the dlib face detector [16] and
obtain 68 facial-landmark points.

Using these landmarks, we obtain the right and left
eye regions in the target frame, from which we obtain
each eye image used as input for the CNN, after grey-
scaling and normalizing with global contrast normal-
ization (GCN). Based on the landmarks, we obtain the
coordinates of four corner points which determine eye
region, At this time, we apply 10% margin to height
and width of the region in order to accept the error of
facial-landmark detection.

2.2.2 Head pose estimation (TempEC-HP)

TempEC-HP uses the 3D head position, which is
computed from facial landmark points. Our position
estimation is based on the EPnP algorithm [17] that
transfers a set of 2D points to the 3D points. We choose

six points (the tip of the nose, the chin, the left corner
of the left eye, the right corner of the right eye and
the left and right corners of the mouth) and obtain 3D
rotation parameters of the head. In TempEC-HP, these
three parameters are added to the network input with
the facial image features.
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Figure 4. Eye contact detection algorithms. (a)
The single-frame eye-contact detection (DeepEC)
first detects the eye regions of the target image
frame and obtains a pair of right and left eye im-
ages. The eye-contact state is obtained by only
the CNN that inputs the eye images. (b) Pro-
posed temporal eye-contact-detection algorithms
that uses multiple (i.e. N) image frames. First,
it detects facial landmarks with the dlib face de-
tector, with which it then obtains eye regions in
each of theN frames. The resultingN pairs of eye
images are inputted to CNNs that have a similar
structure of DeepEC. These CNNs are followed
by a LSTM network, which learns the temporal
state of the eyes. Finally, the target eye-contact
state is obtained by the following fully connected
networks, which use not only the LSTM’s outputs
but also the CNN’s outputs of the target frame
(t = T ) with skip connections.

2.2.3 Deep temporal eye-contact detector

Given the images of both eye regions and the 3D
facial pose, we implemented our two deep temporal eye-
contact-detection algorithms, as shown in Figure 4(b).
The algorithms use ten continuous video frames – the
target frame and nine preceding frames – for predic-
tions. The number of input frames (10 frames) was
experimentally determined according to the results of
a preliminary experiment.



As shown in Figure 4(b), each of these pairs of eye
images ItR, ItL are respectively input to the CNN. This
CNN has the same structure as DeepEC with the ex-
ception of the last two fully connected layers; namely,
it has two streams and six layers consisting of a pair of
two convolution layers followed by max pooling layers.
The CNN outputs a pair of 512-dimensional feature
vectors of each eye image fR(ItR) and fL(ItL).

These feature vectors are input to two separate
LSTM networks for the left and right eye images. In
the TempEC algorithm, each LSTM accepts 10 vectors
corresponding to a series of eye images and outputs one
512-dimensional feature vector. In the TempEC-HP al-
gorithm, a series of 3D vectors that represent 3D head
positions are additionally input to LSTM.

However, we found Näıve LSTM could not perform
satisfactorily. To solve this problem, we prepared the
fully connected layers, which have 2048 (512×4) units
at the last frame that accept the outputs of the left and
right DeepEC’s and LSTM’s cell state vectors. Because
the result of the DeepEC of the current frames is di-
rectly used for eye-contact detection, and the temporal
inference is also merged to the fully connected layers,
we can ultimately obtain better results than the Näıve
implementations of DeepEC and LSTM.

3 Datasets

To train and evaluate the proposed algorithms, we
prepared eye-contact video datasets based on publicly
available videos from YouTube and on our original FPV
videos that assume conversational scenarios.

3.1 Publicly available videos from YouTube

We used 13 videos in which a person talks to a cam-
era. For each frame in the videos, two people annotated
the eye-contact state. We took a consensus of the an-
notations and made ground-truth data. A list of the
videos and their properties is shown in Table 1 and
Figure 5.

3.2 First person eye contact video dataset

Assuming in-the-wild applications, we additionally
prepared first-person-view videos containing conversa-
tional scenarios. Conversational scenarios were taken
in a lab environment in which two participants were
talking. One participant wore a Pivothead Kudu first-
person camera [18], which consists of a frontal-view
camera in the middle of a pair of eye glasses and takes
full HD (1920 × 1080 pixels) video at 30 fps. A list of
the videos and their properties is shown in Table 4 and
Figure 5. We took three video clips from six partici-
pants and two test-video clips from two participants.
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Figure 5. Eye-contact dataset using publicly
available videos from YouTube or first-person
camera (names with *).

4 Experiments

We conducted an experiment to compare the perfor-
mances of the proposed and an existing algorithm using
the datasets. One video was chosen for testing and the
others were used for learning. We iterated this step for
the 16 videos and obtained the average performance.

The learning of the networks with DeepEC, Tem-
pEC and TempEC-HP was conducted as follows. We
first computed the bounding rectangles of eyes using
the facial-landmark points obtained by dlib. The ob-
tained eye images were then rescaled such that the
image was (60 × 36) pixels. We used static CNN
hyper-parameters for all of the experiments. Specifi-
cally, the drop-out rate was 0.5, and Leaky ReLU ac-
tivation function’s α was set to 0.01. We used Adam
optimizer [19] with the learning rate set to 0.001, the
decay as 0.004 per epoch and β1 and β2 as 0.9 and
0.999, respectively.

The results are given in Table 1 and illustrated in
Figure 6. The results show that our algorithms per-
formed the best. Namely, the TempEC algorithm thor-
oughly outperformed DeepEC in precision = 0.8561, re-
call = 0.8544 and F1 score = 0.8706. TempEC-HP out-
performs to TempEC, DeepEC and DeepEC+CRF in
recall and F1-score, with a recall of 0.9248 and F1 score
of 0.8781 on average. Figure 6 shows the area under
the curve (AUC) of our algorithm is larger than that
of DeepEC. TempEC-HP had the best AUC (0.870)
followed by TempEC (AUC = 0.85). Regarding the
accuracy, TempEC-HP achieved a 25% improvement
in miss-detection rate, with 0.1751 in comparison to
DeepEC’s 0.2330.

The more detailed results are in Table 4. Each
row corresponds to one video of datasets. Three from
the bottom which marked with * are first person view
videos and the others are obtained from YouTube.



Table 1. Test results with all videos of dataset.

Precision Recall F1 score
DEEPEC 0.8512 0.7808 0.8319
DEEPEC+CRF 0.7693 0.8339 0.7876
TempEC 0.8561 0.8544 0.8706
TempEC-HP 0.8364 0.9248 0.8781
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Figure 6. ROC curves of (a) The test results with
all dataset, (b) The test results with videos from
YouTube, (c) The test results with first person
view videos.

5 Discussion and Conclusion

We developed an eye-contact-detection algorithm
that uses temporal features as well as static image
features. Our algorithm shows better performance
for various types of dataset. It combines CNNs and
LSTM and successfully learned both stational fea-
tures and temporal dependence. In the experiments,
the proposed TempEC and TempEC-HP outperformed
DeepEC, especially TempEC-HP, which achieved a
25% improvement relative to existing algorithms in the
miss-detection rate.

In our preliminary experiment, a simple concatena-
tion of CNNs and LSTM was not effective. We con-
cluded that such a primitive combination was not suit-
able to learn both static and temporal features at the
same time. Thus, we introduced a skip connection in
the final step of estimation that jumps over the LSTM
networks and directly links the CNN outputs to the fi-
nal fully connected layers. Adopting this structure, our
algorithm’s performance improved, as shown in Section
4. These results show that the skip connection enables
the algorithm to successfully learn both static and tem-
poral features at the same time.

Surprisingly, in the comparison of TempEC and
TempEC-HP, some tests showed that TempEC per-
formed better than TempEC-HP, despite our expecta-
tion that TempEC-HP would completely outperform
TempEC because the facial pose information would
help in detecting eye contact with various face direc-
tions. However, these results do not indicate that facial
pose information is useless. In our algorithm, 3D facial-
pose estimation is based on facial-landmarks, of which
detection is mostly accurate but has a certain degree of
error. This error is not significant, which is why it is not
a problem when used to obtain eye region, but in facial-

Figure 7. Example of failed head-position estima-
tion. The above two faces are clipped from two
adjacent movie frames. The right one is just 0.03
seconds after the left one. Despite the two head
positions appearing to be almost the same, the
algorithm’s estimation shows extremely different
vectors.

pose estimation, such a small error sometimes causes
a large incorrect gap between two contiguous frames,
as shown in Figure 7. The facial pose of two adjacent
frames should be close because a human’s face cannot
move a large amount in a short time (namely, 0.03 sec
because this video was recorded in 30 fps). Due to this
problem, facial-pose estimation is occasionally not suf-
ficiently reliable, which causes TempEC-HP to perform
poorly. Hence, the performance of TempEC-HP can be
improved by using a more accurate facial-detection or
facial-pose estimation algorithm.
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Figure 8. Several examples showing the differ-
ences of DeepEC+CRF, TempEC and TempEC-
HP. CRF tends to ‘smoothen’ the temporal infer-
ence while other two correctly estimate the state
change.

Another notable finding was that introducing tem-
poral inference increased the performance in recall,
which means the temporal information contributed to
‘overlooked’ effects of eye contact. This phenomenon
is also appears to be indicated in our preliminary ex-
periments (Figure 3), which show that we cannot dis-
tinguish the eye-contact state from eye images alone
but can detect it from videos. In our experiment, CRF
could not improve the result of DeepEC. As seen in the
several examples (Figure 8), CRF tends to smoothen
the result of DeepEC, which may contribute to avoid



Name Total Face Eye DeepEC DeepEC+CRF TempEC TempEC-HP
frames detected contacted Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Avec 10,498 8,940 4,671 0.8878 0.8262 0.8559 0.7881 0.8584 0.8217 0.8764 0.888 0.8822 0.8833 0.9241 0.9032
Aziz 11,508 6,711 5,058 0.9386 0.8695 0.9027 0.8838 0.9077 0.8956 0.935 0.8944 0.9142 0.9471 0.9636 0.9553
Derek 11,765 4,550 3,710 0.8865 0.8758 0.8811 0.8495 0.9292 0.8876 0.9244 0.8924 0.9081 0.8761 0.9478 0.9106
Elle 11,739 6,458 4,005 0.897 0.7371 0.8092 0.8522 0.7773 0.813 0.8479 0.9079 0.8769 0.8556 0.9486 0.8997
Emma 13,325 6,302 3,878 0.8196 0.8278 0.8237 0.752 0.8821 0.8119 0.8334 0.8701 0.8513 0.8441 0.7273 0.7814
Wataru 1,675 1,306 1,049 0.8785 0.9162 0.897 0.836 0.9615 0.8944 0.8492 0.9762 0.9083 0.8307 0.9964 0.906
James 9,125 3,270 2,110 0.8957 0.423 0.5746 0.8306 0.4803 0.6086 0.8839 0.9102 0.8968 0.9175 0.8197 0.8658
Kendall 10,735 4,331 3,094 0.8772 0.8423 0.8594 0.8102 0.894 0.85 0.8836 0.917 0.9 0.8654 0.9139 0.889
Liza 10,739 7,440 6,097 0.9313 0.8562 0.8922 0.8838 0.9156 0.8944 0.9539 0.894 0.923 0.9359 0.9144 0.925
Neil 16,487 8,904 5,677 0.8404 0.8894 0.8642 0.4223 0.9031 0.5755 0.8496 0.9729 0.9071 0.7952 0.9753 0.8761
Selena 11,043 6,052 3,634 0.8322 0.7179 0.7709 0.7767 0.7887 0.7826 0.8018 0.7517 0.776 0.7736 0.9282 0.8439
Mai 9,840 2,565 1,330 0.7349 0.7762 0.755 0.698 0.8231 0.7554 0.7022 0.9459 0.806 0.6315 0.988 0.7705
Taylor 13,945 9,444 5,489 0.8085 0.6674 0.7312 0.7473 0.7308 0.7389 0.8889 0.8028 0.8437 0.8141 0.9571 0.8798
Imaizumi* 6,594 2,343 1,664 0.565 0.8873 0.6904 0.5165 0.9543 0.6702 0.6188 0.9148 0.7382 0.6333 0.9312 0.7539
Kitazumi* 21,336 20,364 18,560 0.9024 0.6593 0.762 0.7993 0.7561 0.7771 0.9473 0.3612 0.523 0.9077 0.8818 0.8945
Ogawa* 37,917 29,220 28,032 0.9242 0.7207 0.8098 0.8622 0.7801 0.8191 0.9018 0.771 0.8313 0.8714 0.979 0.9221

Total 208,271 128,200 98,058 0.8512 0.7808 0.8319 0.7693 0.8339 0.7876 0.8561 0.8544 0.8706 0.8364 0.9248 0.8781

Table 2. Experimental results for each video of dataset.

the ‘jittering’ effects of single frame estimations but
does not solve the temporal inference problem funda-
mentally. Thus, we think our current algorithm that
combines the internal states of single frame recognition
and LSTM is better solution.

Our results show great performance in eye-contact
detection, and further, they show the potential of tem-
poral learning of eye behaviour, with which we can
evaluate the care skills of caregivers and find eye move-
ments peculiar to ASDs. Outside of the medical field,
analysis of temporal eye behaviour can enable the pro-
duction of effective advertisements and arrangements
of items.
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