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Abstract

The paper describes a deep network based system
specialized for ball detection in long shot videos. Sys-
tem comprises of flexible detector and classical particle
tracking. The core contribution is incorporation of hy-
percolumn concept in the processing pipeline achieving
real-time tracking on 12MPx videos. System achieves
state-of-the-art results in ISSIA-CNR Soccer Dataset
and its feasibility has been tested on 4 camera proto-
type system.

1 Introduction

AI-powered tracking systems are the emerging tech-
nology in sports industry. Ball tracking in particular
is a core capability of any system aiming to automate
analysis of the football matches or players’ develop-
ment. Despite numerous systems aiming at players
tracking, ball trajectory estimation remains a hard task
for production-class systems, as the object is texture-
less and visually hard to discriminate. This is even
more true in case of stationary camera systems, where
the field of view is usually pitch wide. Resolution of the
ball can achieve less than 20 px. Optical interference
and capture quality may alter visuals significantly.

The system presented in the paper is developed
as a part of a computer system for football clubs
and academies to track and analyze player perfor-
mance during both training session and regular games.
It builds up upon the work presented in [16]. We
tested the ball tracking capabilities in basic scenario
for ISSIA-CNR Soccer Dataset as well as an in-house
dataset from system prototypes installed in academies.
We present results for public databases and insights
into production system challenges.

System has to overcome multiple difficulties. Due to
the perspective projection, ball’s size varies depending

Figure 1. Exemplary patches illustrating high
variance in ball appearance and difficulty of the
ball detection task.

on the position on the play field. Ball’s shape is not al-
ways circular. When a ball is kicked and moves at high
velocity, its image becomes blurry and elliptical. Differ-
ent balls used during matches have different textures
and colours. Figure 1 shows few image patches with
high variance in the ball appearance during a match.

2 Related Work

The first step in the traditional ball detection meth-
ods is usually a background subtraction as in [7] or
motion detection [1, 10]. The second step considers
using criteria like blob size, colour and shape (cir-
cularity, eccentricity) or Circle Hough Transform as
in [1, 5, 11]. A two-stage approach may be employed
to achieve real-time performance and high detection
accuracy as in [10]. In this scenario first step is to iden-
tify regions with high probability that the ball may be
found. Then, multiple candidates are validated. [5] use
multiple successive frames to improve the detection ac-
curacy. Current state-of-the-art neural-network object
detectors can be categorized as one-stage or two-stage.
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Table 1. Details of DeepBall network architec-
ture. Each convolutional layer is followed by
BatchNorm layer and ReLU non-linearity (not
showed for brevity). All convolutions use same
padding and stride one (except for the first one).

Block Layers Output size
Conv1 Conv: 8 7x7 filters

stride 2
Conv: 8 3x3 filters
Max pool: 2x2 filter (8, 268, 480)

Conv2 Conv: 16 3x3 filters
Conv: 16 3x3 filters
Max pool: 2x2 filter (16, 134, 240)

Conv3 Conv: 32 3x3 filters
Conv: 32 3x3 filters
Max pool: 2x2 filter (32, 67, 120)

Conv4 Conv: 56 3x3 filters
Conv: 2 3x3 Filters (2, 268, 480)

Softmax Softmax (2, 268, 480)

In two-stage detector, such as Faster R-CNN [12], the
first stage generates a sparse set of candidate object lo-
cations. The second stage classifies each candidate lo-
cation as foreground or background. One-stage detec-
tors, RetinaNet [8] or SSD [9], do not include a region-
proposal generation step. [14] uses convolutional neu-
ral networks (CNN) to localize the ball under vary-
ing environmental conditions. The limitation of this
method is that it fails if more than one ball is visible.
[13] presents a deep neural network classifier, consist-
ing of convolutional feature extraction layers followed
by fully connected classification layer. It is trained to
classify small, rectangular image patches as ball or no-
ball.

3 Deep network detector

The ball detector used in the system, called here-
after DeepBall, has been inspired by state-of-the-art
detection methods such as SSD [9]. Architectures pre-
sented in these papers have been tailored for locating
small objects and reducing the processing time. The
core concept of the network is the hypercolumn ap-
proach introduced in [6]. Multiple anchor boxes, with
different sizes and aspect ratios have been discarded as
we have only one class of object with fixed shape. De-
tections are further used in a particle-based tracker so
pixel-level bounding boxes are not needed. We evalu-
ated network in two scenarios: single frame and three
consecutive frames stacked together as an inputs.

The method takes a video frame of any resolution as
an input (or alternatively three frames for times (t,-2,
t-1, t)) and produces scaled down ball confidence map
encoding probability of ball presence at each location.
See Fig. 2 for an exemplary input image and corre-

Figure 2. Part of the exemplary input frame
from the test sequence with highlighted ball posi-
tion (left) and corresponding ball confidence map
(right)

Figure 3. High-level architecture of DeepBall net-
work.

sponding ball confidence map computed by the trained
network. Actual position of the ball is computed by
choosing the maximum value or by thresholding the
map in case of a training session (multiple balls used
during training).

The input image is processed by three convolutional
blocks (Conv1, Conv2 and Conv3) producing convolu-
tional feature maps with decreasing spatial resolution
and increasing number of channels. The output from
each convolutional block is concatenated and jointly
fed into the final classification layer. Output of Conv1
and upsampled feature maps from Conv2 and Conv3
form the hypercolumn. The diagram depicted in Fig. 3
shows components of our ball detection network and
size of outputs of each block. Conv4 is a fully convolu-
tional classification block followed by a softmax layer.

The network output has two channels: the first one
interpreted as the probability of the location belonging
to the background and the other as probability of the
ball. For ball detection purposes only the later map
is used. Detailed architecture of each block is given in
Table 1.

Concatenation of multiple convolutional feature
maps from different level of the network allows analy-
sis of bigger receptive field, meaning the context of lo-
cal probability detection is multi-scaled. Conv1 has
high resolution output and thus may contain informa-
tion for precise localization. Conv2 and Conv3 are the
coarse estimation of the local visual variations, giving



feedback on area similar to player’s size. This is very
important in case of players’ interaction with the ball.

Loss function used for training is a modified version
of the loss used in SSD [9] detector. The loss L op-
timized during the training is cross-entropy loss over
ball and background class confidences:

L (c) =
1

N

− ∑
(i,j)∈Pos

log
(
cballij

)
−

∑
(i,j)∈Neg

log
(
cbgij

) ,

(1)

where cbgij is the value of the channel of the ball confi-
dence map corresponding to the background probabil-
ity at the spatial location (i, j) and cballij is the value of
the channel of the ball confidence map corresponding
to the ball probability at the spatial location (i, j). Pos
is a set of positive examples. Neg is a set of negative
examples. During training we employ hard negative
mining strategy as in [9], so the ratio of negative to
positive examples is at most 3:1.

The network is trained using a standard gradient
descent approach with Adam optimizer. The initial
learning rate is set to 0.001 and decreased by 10 after
50 epochs. The training runs for 75 epochs in total.
Batch size has been set to 16.

4 Tracker

For track generation we use basic Particle Filtering
approach using first-order velocity estimation in real
coordinates (given calibrated camera data) with analy-
sis history of two measure points (two frames) for parti-
cle movement. Attempts at a more advanced dynamic
model were discarded as ball’s trajectory is highly non-
deterministic due to interactions with players. Particle
weights are derived by sampling values from DeepBall
confidence map used as a probabilistic measurement
for each frame. This overcomes computational over-
head of the filter, as each particle only samples single
value from the map. Position estimation in evaluation
step is performed with Mean Shift. Dispersion model
is circular in a plane of the pitch and we use around
100 particles per object. Few particles from dispersion
model are shown in Fig. 4. The radius of the disper-
sion is defined by velocity probability model of ball in
the game.

Unfortunately we ISSIA dataset does not contain
data for quality assessment of the tracks. Moreover
we tested if adding track context could be beneficial to
detection, adding capability to interpolate position for
frames with no detection. We found that it is not the
case, as detection algorithm is highly stable for tracks
being easy to identify and highly unstable for occluded,
highly changing part of tracks which produce bad inter-
polation data at the end. Tracks are important though
in the assessment of such metrics as id switching. Such
results are not included in this paper because of lack
of proper public database.

Figure 4. Velocity vector and particles (yellow
dots) during ball tracking.

5 Experimental results

Experimental results are presented as precision and
accuracy of detections of the DeepBall module with
single and multi-frame input version. It is important
to note that ISSIA-CNR does not contain full tracks
data and calibration data. Thus real efficiency for 3D
estimation is still being prepared on suitable prototype
installations. Our tests on custom proprietary CCTV
installations (soon to be prepared for public) shows
no significant gain in accuracy in case of ball detec-
tion when DeepBall outputs full 3D tracks. Tracks are
thus needed mainly for context handling while fully oc-
cluded and when multiple balls are present.

DeepBall network is trained and evaluated using
the ISSIA-CNR Soccer Dataset [2] with additional
manually-annotated data from 12MPx camera CCTV
systems in proprietary installations. We use standard
data augmentation to increase the variety of training
examples and decrease the risk of overfitting.

Table 2 contains test results: Average Precision and
Accuracy of evaluated methods. We use definitions of
metrics as in Pascal 2007 VOC Challenge [3]. FPS
statistics are for ISSIA dataset at FullHD resolution
and proprietary dataset. We achieved 24 FPS in our
test with proprietary datasets, where the footage is
taken from four top-quality 12MPx (4000x3000) CCTV
cameras. It means real-time using Titan X class GPU.
Difference in appearance for two datasets are shown in
Figure 5. Thanks to incoporating NVDEC hardware
decoding, CPU particle sampling and GPU AI scoring
we achieved 24 FPS for whole installation of 4 cameras
ona single pitch. Processing unit for that consists of
two Titan X GPUs and single Ryzen 1700 CPU with
16GB of RAM.

Our method yields the best results on the test set
(Sequences 5 and 6 from ISSIA-CNR Soccer Dataset).
We evaluated two recent ball detection methods for
comparison: [14] and [13] using the same training and
test scenario.



Table 2. Ball detection method evaluation results with ISSIA groundtruth.

Method
Average
Precision

Accuracy
No. of trainable

parameters
FPS (ISSIA) FPS (12MPx)

DeepBall (multi frame input) 0.94 0.94 54 226 192 23
DeepBall 0.88 0.90 48 658 192 24
DeepBall (no data augmentation) 0.792 0.899 48 658 192 24
DeepBall (no hypercolumns/context) 0.833 0.911 29 146 274 32
[14] 0.220 0.220 332 365 744 22 nd
[13] 0.834 0.917 313 922 32 nd

Figure 5. Exemplary frame from the ISSIA-CNR
training dataset (top) and proprietary data from
custom installations (bottom).

6 Production challenges and conclusions

We proposed feasible solution for ball tracking in
Football games. Given very good results on public
databases and real-time performance on highly de-
manding 12MPx images we open multiple ways to an-
alyze football matches in production scenarios. Still,
ball estimation is only one element of huge system
and given efficiency can be achieved only in conjunc-

tion with GPU-accelerated decoding (CPU decoding
of 12MPX is still not feasible for most current-gen pro-
cessors) and wise GPU resources management. Next
step for a proper ball tracking is evaluation of tracking
algorithm, based on track ground-truth and 3D estima-
tion in world coordinates, given multiple-view systems.
Ground truth of such sort is now being prepared by au-
thors for public disclosure and further system rigorous
tests.
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