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Abstract 

Recent developments of deep neural networks, such as 
Mask R-CNN, have shown significant advances in sim-
ultaneous object detection and segmentation. We thus 
apply deep learning to pupil localization for ophthalmic 
diagnosis and propose a novel anchor ellipse regression 
approach based on region proposal network and Mask 
R-CNN for detecting pupils, estimating pupil shape pa-
rameters, and segmenting pupil regions at the same time 
in infrared images. This new extension of anchor ellipse 
regression for Mask R-CNN is demonstrated to be effec-
tive in size and rotation estimations of elliptical objects, 
as well as in object detections and segmentations, by 
experiments. Temporal pupil size estimations by using 
the proposed approach for normal and abnormal sub-
jects give meaningful indices of pupil size changes for 
ophthalmic diagnosis. 

1. Introduction 

Pupil reflexes with lighting changes are important di-
agnostic features of ocular diseases and neuropathies. For 
example, the diagnosis of relative afferent pupillary de-
fect (RAPD), which is an important symptom for 
glaucoma disease, often includes an observation of 
slower or smaller pupil size changes subject to light sim-
ulations [1], [2]. In Adie's tonic syndrome, the pupil sizes 
of both eyes are uneven under normal brightness, and may 
be abnormally dilated with delayed constriction in re-
sponse to light exposure [3], [4]. In clinical diagnosis, 
clinicians usually determine pupil normality subjectively, 
which may lead to different judgments among different 
clinicians, thereby rendering accurate assessment of pupil 
disease severity difficult. Therefore, an automatic and 
quantitative pupil assessment system is important for 
acquiring pupil parameters, i.e., pupil center locations 
and sizes, and for quantifying pupil diseases. 

When designing such a pupil assessment system with 
video capturing for various clinical environments, sever-
al challenging conditions should be addressed. Figure 
1(a)&(b) show the image acquisition system and an im-
age sample of an infrared eye video, respectively, 
wherein the pupil regions are generally darker than sur-
rounding iris regions under infrared video capturing. 
Nevertheless, in Figure 1(c)-(e), the pupils are partially or 
fully occluded by the eyelid and eyelashes. Besides, as 
shown in Figure 1(f), reflection spots of projection light 

in the pupil region will sometimes affect the pupil meas-
urement. Accordingly, we aim to develop a robust pupil 
localization algorithm that can accurately estimate pupil 
center and size parameters in real time under various 
lighting conditions and interferences for the construction 
of a practical pupil size assessment system. 

In recent years, deep learning has brought big ad-
vances in many challenging computer vision tasks, such 
as image object recognitions [5], [6], [7] and segmenta-
tions [8], [9], [10]. In this study, we adopt the framework 
of Mask R-CNN [11] for pupil region segmentation, and 
extend this image object segmentation framework to the 
estimation of pupil localization parameters by introduc-
ing anchor ellipses and ellipse regressions. An advanced 
computational scheme of deep neural network that is 
capable of simultaneous pupil detection, segmentation 
and localization parameter estimation is newly proposed. 
 

  
 (a) (b) 

 
 (c) (d) (e) (f) 
Figure 1. (a) Infrared eye imaging system and captured 
image samples (b) without eyelid occlusion, (c) with 
partial eyelashes occlusion, (d) with partial eyelid occlu-
sion, (e) with full eyelid occlusion (eye blinking), and (f) 
with lighting reflection spots. 

1.1. Related Work 
Automatic image processing has been applied to dis-

eases identifications [12]-[18] for many decades. In 
particular, the detection of circular image objects, such 
as pupils and irises, for medical diagnosis are conven-
tionally performed by Hough transform [19], least 
squares fitting [20], active contour model (ACM) [21] or 
active shape model (ASM) [22]. For example, Sahmoud 
and Abuhaiba [23] adopted k-means clustering and 
Hough transform for iris detection in noisy images under 
unconstrained environments. Bastos et al. [13] combined 
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ACM with pulling-and-pushing and polar coordinate 
transform for pupil segmentation. Abdullah et al. [16] 
applied morphological operations and ACM to extracting 
pupil boundaries in eye images. Chen et al. [17] designed 
a pupil size and blink estimation method to detect pupil 
boundary points and eyelid occlusion states by convex 
hull and dual-ellipse fitting for infrared eye images. For 
the consideration of real-time processing speed, de Souza 
et al. [18] developed a pupil and blink detection method 
for infrared eye images, in which adaptive thresholding, 
morphological operator and the Canny edge filter were 
used to detect pupils. In [24], Shen et al. used k-means 
clustering to locate pupils and applied appearance-based 
circle matching to real-time pupil segmentation. These 
conventional methods for pupil detection, as mentioned 
above, despite their detection accuracies and computa-
tional efficiencies, often require a tedious work of 
manual parameter tuning. Recently, comparisons of sev-
eral pupil detection algorithms for head-mount eye 
tracking are given in details in [25]. 

Different from the conventional approaches mentioned 
above, recent deep learning methods, e.g., U-NET [9], 
DenseUNET [10], Faster R-CNN [26] and Mask R-CNN 
[11], reveal a new framework of image object detection 
and/or segmentation in fully automatic manners by 
stacking convolutional neural network layers for the 
construction of feature maps for general image objects. 
In particular, to detect image objects of different size 
ratios efficiently, Fast R-CNN [27] and Faster R-CNN 
[26] adopted a region proposal network with anchor 
boxes of varied size ratios to locate and classify various 
image objects. Based on [26], Ho et al. [11] further com-
bined object bounding box regression, object 
classification and segmentation in a unified computa-
tional scheme and achieved semi-real-time efficiency. In 
addition to 2D object detection and segmentation, 3D 
model estimation of human motion is recently proposed 
in QuaterNet [28] with Quaternion representations [29] 
for 3D joint localization and singularity treatment. 

1.2. Our Approach for Pupil Localization 
While a pupil is often modeled as a circle or an ellipse, 

it shape is actually not regular. However, we propose to 
adopt an elliptical shape model for pupil detection, be-
cause an ellipse is more general than a circle model and 
applicable for efficient localization task. 

Based on the idea of extending anchor boxes to shape 
models in region proposal network (RPN) [26], we pro-
pose in this study anchor ellipse regression for RPN, 
which is a part of the Mask R-CNN deep network, and 
investigate the feasibility of estimating ellipse parame-
ters for object localization. In order to treat parameter 
estimation ambiguity of ellipse fitting during regression, 
as will be elaborated in Sec. 2.3, we suggest an ellipse 
axis length constraint for the generations of anchor el-
lipse and training data. The proposed anchor ellipse 
regression allows a deep learning network to output not 
only object detection and segmentation, but also object 
localization. 

Our extension of a deep neural network from object 
detection and segmentation to localization for ophthal-
mic diagnosis has several features, including: 

1. A new development of a new deep learning applica-
tion on ophthalmic medical diagnosis, 

2. Efficient localization of elliptical objects with accu-
rate parameter estimations, and 

3. An effective treatment to the ambiguity of localiza-
tion parameter estimation by axis length constraint. 

2. Anchor Ellipse Regression 

Based on region proposal network, a generalization 
from anchor boxes to anchor ellipses is newly proposed 
in this work for pupil localization. While anchor boxes 
have been proved effective for image object detection in 
RPN, the box representation somehow lacks further ex-
pression power of object shape changes, such as 
rotations, for object localization purposes and accurate 
parameter estimations. We therefore extend original an-
chor boxes to anchor ellipses of various major and minor 
axis lengths. Such an extension not only suits our appli-
cation of pupil localization but also conveys a new 
perspective of unifying detection and localization in a 
consistent computational framework. 

2.1 Anchor Box Regression in RPN 
In RPN, the pre-specified anchor boxes are in 5 scales 

and 3 aspect ratios. To identify region proposals of target 
objects, two network layers of classification and regres-
sion are built upon deep convolutional feature maps and 
in charge of categorizing and tuning sliding anchor boxes. 
Thus, the loss function of RPN consists of a classifica-
tion term  and a regression term  as 

 

where  and  denote the predicted and true class 
category of the i-th anchor, respectively, while  and 

 correspond to the vectors of estimated and labeled 
box parameters. The parameter  here is weighting sca-
lar. Particularly, the regression term plays an important 
role in locating an anchor box at target object position 

 and refining its box width/height  to fit a 
true object size. Note that, in Faster R-CNN [26] and 
Mask R-CNN [11] that both adopt RPN as the first stage 
processing for deriving region proposals, the second 
stage regression layer is incorporated as well for fi-
ne-tuning the anchor box regression results. 

2.2 Anchor Ellipse Extension 
As shown in Figure 2(a), an anchor box can be trans-

ferred to an ellipse by assigning box width and height as 
elliptical major and minor axes. Accordingly, the regres-
sion variable  that originally contains four tuples 

 needs to be concatenated with major axis 
length , minor axis length , and ellipse rotation angle 

. The new regression variable  is hence extended to 
seven tuples . 

In anchor generation, anchor ellipses can be conven-



iently derived from original anchor boxes, having the 
same 5 scales and 3 aspect ratios. The major and minor 
axes of an anchor ellipse are actually set as halves of the 
long and short sides,  and , of an anchor box, re-
spectively. The rotation angles of all anchor ellipses are 
assigned 0 degree as well. 

For anchor ellipse regression, the ellipse parameters in 
 are computed by 

      (1) 

where ,  and  are ground-truth parameters of a 
target elliptical object. Here we arrange rotation angles in 

 degrees to accommodate all possible rotation 
conditions due to the symmetry of elliptical shapes. 

2.3 Treatment of Ellipse Estimation Ambiguity 
by Axis Length Constraint 

When estimating ellipse parameters for localization, 
there exists an estimation ambiguity that a target ellipse 
can be fitted from more than one anchor ellipse. As de-
picted in Figure 2(b), a vertical ellipse can be fitted by 
either a horizontal ellipse of ,  under 

 rotation, or a vertical ellipse of , 
 under  rotation. Such an ambiguity can-

not be resolved by RPN regression and needs to be 
amended by an extra treatment. 

To deal with this ambiguity, we propose to impose an 
axis length constraint, i.e., , on the generations of 
anchor ellipse and training ellipses. With this constraint, 
the fitting of the vertical ellipse, as shown in Figure 2(a), 
will be ,  and . Such a treatment 
confines the RPN regressor to learn preferable, con-
sistent ellipse localization parameters from data.  

 

 
 (a) (b) 

Figure 2. Example anchor ellipses of (a) a vertical one, 
and (b) a horizontal one. 

 

 
Figure 3. Samples of binary ellipse images. 

3. Data Preparation and Implementations 

We modify the RPN of an alternative Mask R-CNN 
implementation [30] to incorporate the proposed anchor 

ellipse models. To verify the feasibility of anchor ellipse 
regression, binary ellipse images are firstly generated as 
a basic training and testing dataset for performance test. 

As image samples shown in Figure 3, we randomly 
generate, in  images, 9000 and 300 ellipses 
of different sizes and rotation angles for training and 
testing respectively. In these binary ellipse images, the 
major-axies s are all parallel to the Y-axis and the mi-
nor-axes s are along the X-axis. To prevent degenerate 
cases from ellipse to circle, we manually set . 
Experimental results of this basic test are given in the 
next section. 

In addition to the binary ellipse images for feasibility 
test of anchor ellipse regression, we also acquired 2436 
infrared eye images for medical diagnosis test by Sony 
HDR-PJ790 camcorder with built-in night vision, where 
the camcorder was positioned 10~20cm behind a head 
support, as shown in Figure 1. Two controllable lighting 
devices attached to both sides of the head support pro-
vide light stimulation, with each side alternatively 
turning on and off a given number of times. Subjects 
were asked to place their chin on the head support and 
stare at a pre-specified spot. The pupil is then recorded 
for about 10 seconds with an image size of  
at 30 fps. In this manner, the resultant pixel resolution of 
the acquired image is 0.116mm/pixel. 

In the adopted Mask-RCNN implementation, the 
computational backbone can be ResNet50 or ResNet101 
[7], together with FPN feature map layers of 256 chan-
nels on P2~P5 [31]. As the RPN slides anchor windows 
on the feature map, each feature map convolves a 3×3 
kernel with ReLU activation for increasing the number 
of channels to 512, which will be used as share infor-
mation of later classification and regression. We train on 
a NVIDIA GTX1060 GPU for 15k iterations with learn-
ing rate 0.001. We set a weight decay of 0.0001, the 
momentum 0.9 and batch size 10 in the experiments. 

4. Experimental Results 

To quantify the pupil segmentation accuracy of in our 
experimental comparisons, the Dice coefficient [32] de-
fined as , where  and  are the 
segmented pupil region and the ground truth, respective-
ly, is used as a performance measure. In the 2436 
infrared eye images, 100 frames are manually labeled as 
a test set to mark left and right eye regions, in which 
some challenging conditions, e.g., eye blinking, pupil 
shifting, and overexposure, are included. The execution 
speeds of our anchor ellipse regression on Mask R-CNN 
are about 7.6 fps and 6.97 fps for the backbone of Res-
Net50 and ResNet101, respectively. 

4.1 Ellipse Localization Results 
We use the generated binary ellipse images, as shown 

in Figure 3, to verify the feasibility of the proposed an-
chor ellipse regression by localizing target ellipses and 
estimating their major and minor axes and rotation an-
gles. As a result, the average major- and minor-axis 
estimation errors in length are both below 1 pixel, while 
the average error of rotation angle estimation is about 4 



degrees. Some localization results using the proposed 
anchor ellipse regression are given in Figure 4. The ex-
perimental results of this basic test are rather promising 
and validate the effectiveness of the proposed approach 
of ellipse parameter estimation using anchor regression 
based on deep feature maps. 
 

   
Figure 4. Sample results of binary ellipse localization. 

4.2 Pupil Localization for Medical Diagnosis 
Because the positions of left and right pupils acquired 

by the imaging device are mostly within fixed ranges in 
an  image, we therefore crop two 

 image regions corresponding to left and 
right eyes in each image frame for further pupil localiza-
tion. 

In our extension of anchor ellipse regression for Mask 
R-CNN, pupil regions can be quantified by rectangular 
bounding boxes (BBoxes), the proposed elliptical shapes 
and mask segments. By averaging the width and height 
of a BBox on a pupil as a circle radius, one can easily 
extract a circular region round a pupil. Such a circular 
region derived from BBox is used as a baseline for pupil 
localization evaluations. Besides, a segmentation mask 
on pupil, which may be in non-regular shape, can also be 
obtained by Mask R-CNN. The mask segments of pupils 
are also adopted as an index for experimental compari-
sons. Additionally, the adopted deep learning-based 
approach is also compared to the conventional adaptive 
thresholding method [24], which is based on k-means 
clustering and thresholding, for pupil localization. 

As depicted in Table 1 for quantitative evaluations, the 
proposed elliptical localizations is compared with the 
adaptive thresholding [24], the baseline BBox circles and 
the original mask segments from Mask R-CNN for pupil 
region extraction. The proposed ellipse regression results 
are better than BBox circles, but a little worse than pupil 
mask segmentations, due to pupils being not in perfect 
elliptical shapes. Note also that mask segmentations de-
rived from the original Mask R-CNN, if without any 
further processing, cannot output localization parameters 
of pupils, such as, axes and rotation angles, which can be 
directly derived by the proposed approach. Moreover, the 
proposed anchor ellipse regression is shown in Figure 5 
to be effective on pupil localization under slightly partial 
occlusion. 

Regarding pupil localization for medical diagnosis, we 
report light stimulation experiments for a normal and an 
abnormal case in this paper. Considering that the pupil 
sizes of both eyes were different in some subjects, we 
compute the pupil expansion and contraction sizes in 
terms of circle radii. Here, two ellipse axes are averaged 
to estimate a pupil radius for fast analysis. Figure 6(a) 
and (b) show the curve diagrams of the detected pupil 
radii for a normal and an abnormal case, respectively. 
The blue and red curves respectively indicate the radii of 

the left and right pupils, and the blue and pink marks in 
the plots correspond to the detected lighting periods on 
the left and right sides. The trends of pupil radius changes 
of both the left and right pupils are nearly identical in the 
normal case. On the other hand, the trend difference be-
tween both eyes can be easily discriminated in the 
abnormal subject. This experiment demonstrates the ef-
fectiveness of the proposed anchor ellipse regression on 
practical ophthalmic diagnosis. 
 
Table 1. Experimental comparisons of pupil segmenta-
tion results using Dice coefficients. 

Dice Coef-
ficient 

BBox 
Estimation 

Anchor 
Ellipse 

Regression 

Mask 
Segmenta-

tion 
[24] - - 0.892 

Our approach 
w/ ResNet50 0.931 0.940 0.958 
Our approach 
w/ ResNet101 0.938 0.945 0.959 
 

 
Figure 5. Result of pupil localization using anchor ellipse 
regression (in yellow) and mask segmentation (in red) 
under partial eyelid occlusion. 

 

 
(a) 

 
(b) 

Figure 6. Pupil radii curves for (a) a normal subject and 
(b) an abnormal subject for ophthalmic diagnosis. 

5. Conclusion 

We propose a new computational scheme of anchor 
ellipse regression for Mask R-CNN-based deep network 
for simultaneous derivations of object detection, locali-
zation parameter estimation and object mask 
segmentation. Experimental results demonstrate the ef-
fectiveness of the proposed approach on pupil 
localization parameter estimation and on ophthalmic 
diagnosis. 

In the future, a larger number of subject image se-
quences may be acquired for further evaluation and 
improvement of the proposed system. The clinical diag-
nostic applications for different eye diseases will also be 
investigated. 
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