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Abstract

In this work, we tackle the problem of estimating the
relative pose between two cameras in urban environ-
ments in the presence of additional information pro-
vided by low quality localization and orientation sen-
sors. An M-estimator based approach provides an el-
egant solution for the fusion between inertial and vi-
sion data, but it is sensitive to the prior importance of
the visual matches between the two views. In addition
to using cues extracted from local visual similarity, we
propose to rely at the same time on learned associa-
tions provided by the global geometrical coherence. A
conservative weighting scheme for combining the two
types of cues has been proposed and validated success-
fully on an urban dataset.

1 Introduction

This paper aims at exploiting and improving the
fusion of pose priors from sensors (GPS, accelerome-
ters, gyroscopes, magnetometers) and image features
for the estimation of relative camera pose. The esti-
mation of relative camera pose is a fundamental step
for many computer vision tasks, such as structure from
motion(SFM), SLAM or object tracking. Traditional
pose estimation relies on image features: given a pair
of images (Ia, Ib), the standard procedure may be de-
scribed as follows:

• Extract SIFT keypoints for (Ia, Ib) and assign a
built-in descriptor to each keypoint;

• Construct keypoint correspondences from Ia to Ib
by matching them using SIFT descriptor distance
minimization with a rejection threshold based on
the ratio of the two smallest distances;

• Calculate the relative pose (R, t) by decomposing
the fundamental or essential matrix after having
computed it using a robust estimation RANSAC
on correspondences, or estimate (R, t) directly us-
ing an iterative estimation method such as an M-
estimator.

However, this traditional strategy only based on
image feature is limited by inaccurate matching due
to the presence of repetitive features and occlusions,
which often occur in urban scenes. Nowadays, sensors
available in GPS receivers or IMUs are widely inte-
grated with camera devices in smart phones. These
sensors provide a readily available camera pose infor-
mation, albeit often very imprecise. Despite its un-
certainty, the sensor prior can play a crucial role in
improving pose estimation based on image feature.

There exist some fundamental approaches for inte-
grating the pose prior with image information. The au-
thors of [1] fuse the pose prior provided by IMU during
the matching step in a process which can be considered
as filtering for the relative pose estimation. They con-
strain the search area for correspondences around the
epipolar line defined by sensor data in order to guide
the matching. As mentioned in [2], this method is very
sensitive to sensor noise.

For many works on visual inertial SLAM using tem-
poral sequences, a common fusion method is to con-
strain separately the image based estimation and pose
prior as prediction step and correction step for Kalman
filtering [11, 3]. Provided that video sequences cover
in detail the area of interest, even pure visual SLAM
may provide accurate results for registering cameras
in urban scenes [10]. However, in our work we study
the more constrained scenario in which a single pair of
images is available, along with a low quality pose prior
provided by low cost GPS and inertial sensors. Indeed,
in metropolitan areas video-recording (especially us-
ing UAVs) is highly regulated, and even if videos from
ground-level dynamic cameras are available, they have
often low quality and are heavily occluded.

In the last years, minimizing a loss function includ-
ing both image features and pose prior by non linear
optimization has been shown to be more accurate than
Kalman filtering in visual-inertial SLAM [4]. To the
best of our knowledge, [2] is the first work who extends
a similar idea for the relative camera pose estimation
for a single pair of views. Instead of using RANSAC,
they propose an algorithm called SOREPP which re-
lies on the fusion of putative correspondences and of
noisy pose priors from sensors. In order to be robust
to outliers, they use the following M-estimator:

ŝ = arg min
s

{
c

(∑
k∈Ω

w(k)(1− g(k, s))

)
+ λ(s)2

}
,

(1)
where c is a weighting parameter, Ω is the set of pu-
tative correspondences and w(·) their weights, g(k, s)
is a Gaussian score evaluated for the correspondence
k with respect to the relative pose s, and the regular-
ization term λ(s) is a distance measure between s and
the sensor prior.

The performance of SOREPP depends on the sensor
precision as well as on the quality of correspondences
in the set Ω and the values of w(·). If the GPS/IMU
uncertainty is too high, the regularization term value
λ(s) decreases and impacts less the optimization. The
presence of a significant ratio of outliers in Ω makes
it difficult for the M-estimator to find good solutions,
except with very precise pose priors. In order to guide
the M-estimator, SOREPP estimates a correspondence
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weight in the form of a rough approximation of the
prior probability of being an inlier [2] (see Section 2.1).
Although it has the advantage of being simple, the
proposed weighting tends to be unreliable in scenes
with repetitive patterns such as urban contexts.

Our work aims to further improve the estimation of
weights for correspondences, and therefore to improve
the performance of pose estimation based on SOREPP.
To this aim, we propose that weights be also based on
a global geometry consistency estimated by a deep net-
work recently introduced in [5]. Then, we explore how
to combine this additional criterion with the weighting
strategy based on local classical features in SOREPP.
Our main contributions consist in:

• applying jointly a neural network with a pose prior
for robust relative camera pose estimation;

• developing an effective correspondence weighting
strategy by exploiting SIFT features as well as ge-
ometric consistency.

2 Proposed estimation

In the following, we discuss the weighting strategy
based on local visual features from [2], as well as on
global geometry consistency as introduced recently in
[5]. The last part of this section highlights how these
two weighting strategies guided by fundamentally dif-
ferent objectives may be used jointly in order to obtain
robust correspondence weights.

2.1 Weights from classical features

A set of putative correspondences Ω is constructed
using the classical SIFT nearest neighbor strategy [6]
with a standard ratio threshold of 0.75. SOREPP de-
fines independently the weight w(k) for each correspon-
dence k based on the SIFT ratio test [6] :

∀k ∈ Ω, w(k) = 1− d1NN (k)

d2NN (k)
. (2)

The underlying assumption is that more distinctive the
first nearest neighbor, more likely the matching corre-
sponds to an inlier. However, this cue which is based
only on the descriptor appearance, is not robust in
presence of repetitive features and occlusion. Further-
more, while decreasing the number of outliers, the non-
adaptive ratio threshold reduces as well the number of
inliers, an outcome which is undesirable when inliers
are scarce. Next we will discuss the weighting strat-
egy based on global geometry consistency which avoids
relying on a fixed ratio threshold.

2.2 Weights from the geometry network

Given all coordinates of putative correspon-
dences in Ω = {k1, k2, ..., ki, ..., kN}, with ki =
(xai, yai, xbi, ybi) ∈ Ω, for an image pair (Ia, Ib), which
is constructed by classical SIFT nearest neighbor strat-
egy without ratio threshold, a weakly supervised deep
network is trained in [5] to estimate a global geometri-
cally consistent weight wk ∈ [0, 1] for each correspon-
dence:

{w(k1), w(k2), ..., w(ki), ..., w(kN )} = fΦ(Ω), (3)

0 0.5 1
w

v

0

0.01

0.02

0.03

0.04

0.05

0.06

F
re

qu
en

cy

inliers
outliers

0 0.5 1
w

g

0

0.2

0.4

0.6

0.8

F
re

qu
en

cy

inliers
outliers

Figure 1: Histogram of inliers and outliers for wv

(above) and wg (below). The neural network provides
a much crisper output compared to a traditional ap-
pearance based evaluation.

where fΦ(·) is the regression of a deep network with
parameters Φ. If w(ki) = 0, the correspondence ki is
likely to be an outlier and classified as such, following
the precautionary principle.

The core idea is that inliers are geometrically struc-
tured, conversely to outliers. Unlike the weight based
on ratio test in Section 2.1 that depends only on the
considered correspondence, when considering geomet-
ric consistency all correspondences contribute to the
estimation of w(ki). Because this globally geometric
weight is independent of appearance, it can potentially
avoid the appearance ambiguity for repetitive features.

2.3 Exploiting both cues

It is useful to exploit jointly the local appearance cue
and global geometric consistency cue because of their
complementary information and their relative balance
in performance and precision. In the following part,
different combinations of these cues are investigated
and compared. For the sake of simplicity, wv denotes
the weight from classical visual features given by Eq.
(2), wg the weight from the geometry network given

by Eq. (3) and w(i) the combined weight to be inves-
tigated for a specific correspondence k.
Linear operation. The simplest fusion approach



is to consider the average of wg and wv:

w(1) =
wg + wv

2
, (4)

Averaging can be seen as a weight filtering which al-
lows to keep considering correspondences having pos-
sible a very low weight wv or wg, while reinforcing
correspondences with both high weights. In our case,
this averaging approach is taken as the baseline.
Regression. Instead of applying a simple averag-

ing operation, it is possible to learn automatically the
fusion weight by logistic regression :

w(2) = g(wg, wv), (5)

where g(·) represents the bivariate logistic regression
function.

In order to train the regression model, we choose
image pairs in the dataset of [5] and match corners us-
ing the classical nearest neighbor SIFT strategy. The
values wv are computed during the matching step,
whereas values wg are obtained by taking the matched
correspondence coordinates for each image pair as the
input of neural network model in [5] with the trained
model. By choosing a fixed Sampson distance thresh-
old of matching points to the epipolar line, each corre-
spondence is labeled as 1 for inliers or 0 for outliers. As
expected, in our setting the resulting weight is close to
1 when wv is larger than 0.8 irrespective of the value of
wg. This seems to be reasonable since for few outliers
the ratio test is higher than 0.8 according to Fig. 1,
upper histogram. Compared to averaging, regression
tends overall to increase the combined weight, which
might increase more the influence of potential inliers
but also that of some outliers.
Conservative weighting. The previous strategies

introduce more or less some confusion between inliers
and outliers in terms of weighting for the M-estimator
based optimization. In order to be stricter, we pro-
pose to adopt a conservative weighting based on a
pessimistic function such as min(wg, wv). One sig-
nificant consequence is that, in contrast to previous
strategies, the min operation discards entirely the cor-
respondences with wg = 0, which exhibit a high ratio
of outliers.

Since wv seems to be more unreliable according to
Fig. 1, the symmetric weight from visual cues de-
noted by wvs (computed by interchanging for the as-
sociation the source and destination images in the
pair) is also taken into account in order to constrain
more the influence of visual part, and wv is substi-
tuted by min {wv, wvs}. However, the geometry net-
work exhibits already a conservative behaviour in the
way it outputs the weights (see Fig. 1, lower his-
togram), thus the symmetric weight from the network
denoted by wgs is used conversely in order to allow
more prospective points identified by geometric coher-
ence: max {wg, wgs}. Finally, by taking into account
the particular behaviour of the two weighting algo-
rithms, the fusion weight is computed by the following
formula:

w(3) = min {max {wg, wgs} ,min {wv, wvs}} , (6)

The result in Eq. (6) is also due to the fact that the
loss function used in the neural network encourages a

crisp decision regarding the nature of each input ob-
servation, a behavior which is clearly visible as well in
Fig. 1 when comparing the geometry weighting with
the histogram of wv values.

3 Experiments

In the experimental part, we evaluate the perfor-
mance of the weighting strategies introduced in the
previous section, and we compare them to SOREPP
algorithm [2] and to the geometric network [5] on a
dataset collected in a challenging urban environment.
We start by presenting the dataset, then we introduce
the implementation details followed by the evaluation
metric. The quantitative details are then discussed.

3.1 Dataset

We collected an urban scene dataset containing 32
images acquired with a smart phone in front of a ma-
jor railway station, some of the images being taken
at ground level and some from the upper floors of a
building. As in [2], the GeoCam application was used
to record in each image header the approximate pose
provided by the embedded sensors. The ground truth
was constructed by feeding all the images into Visu-
alSFM [7]. The relative poses were varied gradually in
order to ensure a high-quality VisualSFM estimation,
and also to provide image pairs with varying degrees of
difficulty for our pose estimation problem. The dataset
is provided to the academic community1.

3.2 Implementation

Given an image pair from the dataset, we com-
pute two correspondence sets Ω1 and Ω2 using the
SIFT nearest neighbor strategy with different ratio test
thresholds. A standard ratio test threshold 0.75 is cho-
sen for Ω1. For Ω2, we choose a very high value 0.95
which almost amounts to cancelling the ratio test, but
it actually still helps eliminating a fair number of cor-
respondences. We compute the weight wv as in Eq.
(3) for each correspondence in Ω1 and Ω2 during the
matching step. Furthermore, we take all normalized
matching point coordinates in Ω2 as the input of the
geometric network in [5] and we get a geometric weight
wg for each correspondence in Ω2. We use Ω∗2 to denote
the subset of Ω2 where wg is greater than 0 and each
correspondence in Ω2 is normalized. We applied the
model trained by the authors of [5] on outdoor scenes.
At the same time, we also compute three versions of fu-
sion weight w(1), w(2) and w(3) for Ω2 separately with
Eq. (4), (5) and (6).

According to the various inputs and algorithms, we
classify the different estimation methods as shown in
Tab 1.

3.3 Evaluation metric

Given the estimated rotation matrix and translation
vector (Res, tes) and the ground truth (Rgd, tgd) for rel-
ative camera poses, we compute the rotation error δR
and translation error δt separately for the evaluation.

1The data used in this work may be found at: http://

hebergement.u-psud.fr/emi/S2UCRE/ChenMVA19.zip

http://hebergement.u-psud.fr/emi/S2UCRE/ChenMVA19.zip
http://hebergement.u-psud.fr/emi/S2UCRE/ChenMVA19.zip


(a) Image at ground level (b) Ground truth (c) Sensor provided pose

(d) GEO-RANSAC [5] (e) SIFT-SOREPP [2] (f) Ours-CNSV

Figure 2: Illustration of pose estimation results between a ground level view (Fig. 2a) and an overview camera.
The ground truth (Fig. 2b) is computed using SfM on a larger set of images. The quality may be assessed visually
based on the position of the manually defined control points with respect to their epilines, and based on the
location of the epipole.

Table 1: Estimation method

Name Algorithm Input
Sensor - -

SIFT-RANSAC RANSAC Ω1

GEO-RANSAC [5] RANSAC Ω∗2
SIFT-SOREPP [2] SOREPP Ω1, wv, sensor

GEO-SOREPP SOREPP Ω2 , wg, sensor
Ours-LO SOREPP Ω2, w(1), sensor

Ours-REG SOREPP Ω2, w(2), sensor
Ours-CNSV SOREPP Ω2 , w(3), sensor

For δR, we firstly compute the relative rotation matrix
∆R between Res and Rgd, with ∆R = RT

es · Rgd. ∆R
can be represented by a rotation of angle φ around a
vector v. Smaller is φ, closer Res is to Rgd . Thus the
extent of the rotation error δR can be approximated
by φ which is computed as (see page 584 in [8]):

δR ≈ φ = arccos

(
Tr(∆R)− 1

2

)
, (7)

with Tr(·) the trace of a matrix.
The translation error δt is computed as the angle

between tes and tgd :

δt = arccos

(
tes · tgd
‖tes‖‖tgd‖

)
, (8)

In the following, we take the pose estimation error
as the maximum value between δR and δt. To evaluate

the performance of each method, we compute the cu-
mulative curve of pose estimation error taken, as previ-
ously performed in [5] and in [9]. For each method, the
corresponding curve presents the percentage of image
pairs whose pose is successfully estimated with respect
to a given error threshold. As a qualitative result, we
illustrate in Fig. 2 a relative pose estimation for an
image pair, and the corresponding epipolar lines and
epipole locations for the different methods considered.

3.4 Quantitative evaluation

The evaluation results are presented in Fig. 3. When
comparing the weighting strategies and the other
methods, the Ours-CNSV approach which uses the
conservative fusion rule shows the best performance.
The important role of the noisy pose priors provided by
sensors is confirmed by the SOREPP based estimation
(SIFT-SOREPP) which improves over the pure vision
based algorithms, namely classical SIFT-RANSAC and
the geometry based network (GEO-RANSAC). The
linear weighting and the bivariate regression weights
are less effective in supporting the M-estimator, espe-
cially in the high precision range (error smaller than
5 degrees) which is desirable for the accurate local-
ization of elements of interest in the camera fields of
view. Our experiments confirm systematically that re-
lying on the more permissive Ω2 threshold for visual
filtering is more effective than using the stricter Ω1,
because the global geometric consistency provided by
the neural network identifies more reliably the inliers
than the local fixed ratio test threshold used classically
for SIFT matching.
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Figure 3: Rotation and translation success ratio of var-
ious pose estimation algorithms depending on a given
error threshold.

4 Conclusion

For the relative pose estimation problem, we pro-
posed a strategy to rely at the same time on local infor-
mation provided by visual similarity, and by a global
geometrical coherence of the transformation between
two views. We combined the two types of cues along
with localization and orientation information within
an M-estimator, with excellent results on real data ac-
quired in an urban scenario.

In future work, we intend to formalize the usage of
prior knowledge in the combination process in order
to extend it for other sources of information assessing
the reliability of interest point matches, i.e. belong-
ing to the same semantic category or exhibiting local
similarity in terms of a learned function.
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