
End-to-End Feature Pyramid Network for Real-Time
Multi-Person Pose Estimation

Dingli Luo1,2, Songlin Du1, and Takeshi Ikenaga1

1Graduate School of Information, Production and Systems, Waseda University,
Kitakyushu 808-0135, Japan

2University of Electronic Science and Technology of China,
Chengdu 611731, China

luodingli@toki.waseda.jp

Abstract

In computer vision, pose estimation system is widely
used to construct human body transformation. How-
ever, it is hard to achieve these targets together: sta-
ble real-time speed, variance human number and high
accuracy. This paper proposes an end-to-end pose
estimation network. It contains a neural network
friendly representation of human pose. Then it pro-
poses a correspond real-time end-to-end pose estima-
tion network based on feature pyramid network struc-
ture with attention-based detection modules. This net-
work can detect multiple humans in more than 60 fps
with 384 × 384 resolution on GTX 1070 with afford-
able accuracy. This work shows the potential of this
network structure can perform both faster and better
compared with state-of-the-art results.

1 Introduction

The task of pose estimation system is taking an RGB
image as input then determining the transformations
for every body part of each person in the image. This
kind of system has been widely used in the motion
capture systems [1], sports analysis systems [2] and
augmented reality applications [3].

Many of them have real-time constraints to make
the whole system have good performance. It is a prob-
lem to both have good accuracy and stable high speed
with variance human number in inputs. There are two
kinds of deep learning based methods have been pro-
posed: two-stages and one-stage. Two-stages methods
like Mask-RCNN [4] first recognize each person in the
image then use single person pose estimation network
to detect human pose one-by-one. This can give high
accuracy but can hardly achieve stable real-time speed
with variance human number. One-stage methods like
OpenPose [5] directly produce middle information of
all humans’ pose and then use the traditional method
to construct each human’s pose. These methods don’t
need the recognition for each human and the speed of
one-stage methods is not affected by the number of
humans and can archive stable high speed. So these
method is more popular in real-time applications.

Although the one-stage solution is fast, the connec-
tion term causes accuracy loss. The network struc-
ture limited the middle information used by connection
term. Moreover, the less information causes the lower
accuracy. However, the more information the network
produces, the slower the network performs. It is not

easy to find the balance manually. Also, to provide
high-quality middle information, many researchers add
many redundancy structures. The redundancy struc-
tures also slow down the whole process. Finally, al-
though this network is designed as one stage, users pro-
cess these network with the image in different scales to
adapt the different size of humans in the image. Pro-
cessing more than one time is much slower.

Unlike the other one-stage solution, this paper pro-
poses an end-to-end pose estimation neural network for
archiving real-time speed in affordable accuracy loss.
Our network directly produces the connection infor-
mation instead of middle information. The only cal-
culation after network processing is linking the joints
based on network output which is easy and fast. By
using the context information, the network produces
higher quality connection predict results. To fit the
different size of humans, a feature pyramid network [6]
structure is added to adapt different scale of human in
one time. Moreover, attention based mechanism is also
added to mask out the best suitable area for different
scale of feature maps. These three methods help us to
produce a smaller and faster network.

Our contributions are summarized as follows:

• We propose a new neural network friendly rep-
resentation of human pose to make the network
directly produce a human pose.

• We propose a feature pyramid and attention based
network structure to do multiple human pose es-
timation faster.

• We give the performance report of our network
by the evaluation on Microsoft COCO 2014 [7]
dataset and prove our network achieves better per-
formance compared with current state-of-the-art
solution.

2 End-to-End Feature Pyramid Network

2.1 Human pose representation

To make the neural network directly produces the
pose transform, a data structure have to be designed
in order to represent each joint of the body.

A joint contains three kinds of information: the cen-
ter position, the class of current joint and the par-
ent joint. a feature map is used to represent every
joint in the input image. Each body part is encoded
at center position {x, y} in feature map with a vector

16th International Conference on Machine Vision Applications (MVA)
National Olympics Memorial Youth Center, Tokyo, Japan, May 27-31, 2019.

© 2019 MVA Organization

05-10

Our Network

Input
Image

Multiple
Scale

Neural
Network Middle

Result

Multiple
Processing

Joint
Information

Input
Image

Multi-scale
Detection in

Network

Joint
Information

No
Middle
Result

Processing
Only
Once

(a) Current state-of-art work

(b) Ours work

Figure 1. The overall structure of our system and
the comparison between current state-of-the-art
work. Current state-of-the-art work adapt differ-
ent human sizes by processing the network mul-
tiple times in different image scale. And the net-
work produces one kind of middle result and then
use another step to get the final result. Our work
uses a build-in multiple-scale detection module
in network. And our network directly produces
the joint information without the middle results.
This makes our network processes faster.

{Pc, TargetOffset}. Pc represents the probability of
body part class.

TargetOffset = (TargetX −X,TargetY − Y) (1)

represents the offset between joint’s target location and
the center.

For given input image in size (width, height) , the
network will produce a (width/8, height/8, 9) feature
map called heat map and a (width/8, height/8, 2) fea-
ture map called connection map. The vector at {x, y}
in heatmap represent the probability Pc of current po-
sition {x, y} is the center of the following body parts:
{Nose,Head, Shoulder, Elbow,Hand, Pelvis,Knee,
Foot}. The left or right of each body part is not iden-
tified by network because it is tough to request the
neural network to classify left or right. Classifying the
side class based on the local area is impossible. So, the
network needs much more calculation to identify the
side information with global information. Then the
vector at {x, y} in connection map represents the tar-
get position offset TargetOffset if current position is
any center of body part. If it is not any body part cen-
ter, the output is directly removed which means any
result is affordable.

Current joint’s target location offset is used as out-
put instead of directly output the target joint’s mem-
ory address because currently there is no good solu-
tion to achieve this. A long short-term memory neural
network (LSTM) [8] may be used to generate a di-
rected graph of joints one by one, but the speed cannot
achieve our need. So the network outputs the target
location offset directly. Then use a simple search to
find the nearest joint with correspond class near the
target location and connect them.

We split the pose estimation problem into two dif-
ferent problems:

Classification Problem: Classify the class of a local
area is easy. All tasks need global information are
removed like side classify.

Regression Problem: Regression problem means
that the network predicts the target location off-
set in current output pixel position {x, y} but do
not consider the class of this pixel. Different from
[5], the target location can be directly calculated
by this offset instead of searching PAF maps.

This design significantly improves the performance of
small size network and improve the speed of the current
network.

2.2 Network architecture

The network architecture is shown in Figure 2. The
whole network is constructed by 4 parts. They are as
follows:

Convolution Part: We use ResNet34 [9] as a back-
bone. The input image is scaled down by a set
of convolutional neural networks. Using resid-
ual connections between convolutional layers has
been reported to show good performance com-
pared with building large size network. It also
solves the gradient vanishing problem in deep neu-
ral networks.

Deconvolution Part: We take the last layers output
from ResNet34 and processed by a deconvolution
layer. Then concatenate the deconvolution layer’s
output with the correspond convolution layer’s
output. We repeat this Numdeconv times. We
decided to make Numdeconv = 3 based on our
test results.

Map Generation Part: Each output of deconvolu-
tion layers are processed by a “Detect Module”.
Then the results are used by two different “Map
Generation Module” to generate one heat map
and one connection map individually. We design
this because we think part of the calculation of
heat map and connection map is shared to speed
up.

Output part: In this part, the different output from
deconvolution layer with same map class are con-
catenated together. Then use one 1×1 convolution
layer to generate the final output.

The convolution part and deconvolution part con-
struct a feature pyramid network structure which has
been widely used in object detection tasks [6]. Both
of them has been proved to detect targets in differ-
ent scales. This structure is used to avoid scale image
into many different sizes and process the network more
than one time.

The map generation part is made by two kinds of
modules. The details of each kind of module are as
follows.

Detection Module: Although the classification and
the regression task are different, they still share
part of calculations. This part of calculation is
combined into one module called “Detection Mod-
ule”. It contains 3 blocks with the same structure.

Conv Block

Detect Module

Block 1

ResNet 34

Input
Image

Concatenate

Concatenate

Concatenate

Deconv

Deconv

Deconv

Conv
1x1

Heat
Map

Connection
Map

C
on

v
1x

1
Ba

tc
h

N
or

m
Le

ak
y

R
el

u
C

on
v

3x
3

Ba
tc

h
N

or
m

Le
ak

y
R

el
u

C
on

v
1x

1
Ba

tc
h

N
or

m
Le

ak
y

R
el

u

Bl
oc

k
2

Bl
oc

k
3

+

Map Generate Module

C
BA

M

Bl
oc

k

C
on

v
1x

1
Ba

tc
h

N
or

m
Le

ak
y

R
el

u
C

on
v

3x
3

Ba
tc

h
N

or
m

Le
ak

y
R

el
u

C
on

v
1x

1
Ba

tc
h

N
or

m
Le

ak
y

R
el

u

C
on

v
3x

3

Conv
1x1

Figure 2. Brief network architecture. It is divided into 4 parts: convolution part, deconvolution part, map
generation part and output part. Section 2.2 explains the details of the network

This block is inspired by [9]. Instead of directly
doing a 3x3 convolution with full filters, a 1x1 con-
volution is used to reduce the filter number into a
half, then do 3x3 convolution, and use a 1x1 con-
volution to recover the original filter number. This
convolution design has been proved to be faster
because of less calculation.

Map Generate Module: This is the module respon-
sible for generating heat map or connection map.
this module contains a Convolutional Block At-
tention Module(CBAM) [10], a convolution block
which is the same as the detection module and an
output 3x3 convolution layer. Since the different
level of feature map is good at detecting different
scale of objects, CBAM modules are used to mask
out the area which this level is responsible for.

2.3 Loss function and training

Our network’s loss function is as follow:

Loss = Lossclassification + Losstarget (2)

We do not use cross-entropy as classification loss,
but use an L2 loss between network output classes C
and target classes Ĉ:

Lossclassification =

height∑
y=0

width∑
x=0

9∑
c=0

(C − Ĉ)2 (3)

For target location loss, we use a masked L2 loss:

Losstarget =

height∑
j=0

width∑
i=0

1obji,j ((x− x̂)2 + (y − ŷ)2) (4)

This loss function design is inspired by Yolov2 [11]
network.

There are 2 kinds of Losstarget, with a mask or with-
out. Without version

Loss′target =

height∑
j=0

width∑
i=0

((x− x̂)2 + (y − ŷ)2) (5)

shows much worse accuracy compared with the masked
version. The masked version still produces target po-
sition info even the area is not a center of any body
part. However, it can directly ignore this and focus
on the accuracy where have body parts. In our result,
applying mask reduce the error into 22%.

We use Adam RMSprop[12] with Nesterov momen-
tum optimizer (Nadam). The learning rate is set
at 0.002. Whole training takes about 4 days in one
Geforce GTX 1080 Ti. We train this network on the
COCO2014 [7] data set.

2.4 Connection fix

After getting the result feature maps, each joint is
connected with its parent based on the target position
info. This connection progress is made through the
following steps:

1. Joint Detection. Detect every single joint based
on the heat map. It iterates all pixel on the heat
map, find out if the background probability is less
than a given threshold. If so, process this pixel as
follow.

(a) Find out the maximum probability class, if
the probability is more than that threshold,
continue.

(b) Apply a non-maximum suppression to this
pixel to find the center of this body part.

(c) If find the center, read the target offset and
calculate the target’s position.

(d) Add this joint into the joint list.

2. Joint Link. Link joints based on target position.

(a) Search potential joints in the target posi-
tion’s local area.

(b) Check the joint class is link-able.

(c) If the joint is in {Hand, Foot, Elbow,Knee},
put this two joints as a potential edge into
edge list. Otherwise, find the closest joint
and connect them.

Table 1. Processing FPS compared with state-of-
art

GPU Ours OpenPose
GTX 1080Ti 83 10
GTX 1060 55 5
GTX 1050 38 2.4

Figure 3. Results of single person and multi-
person. These are running on a laptop with GTX
1070 gpu with more than 60 fps.

(d) Each time when it finds a possible edge with
minimal error, connected them, and remove
edges which contains the same target joint.
Repeatedly do so until edge list is empty.

There is a problem if current joint is directily con-
nected to the joint which is nearest to target position.
Some joints only have one child. However, sometimes
two joints’ target position close to the same joint. So
firstly this method stores all potential connection pair
with errors. Then it connects each joint pair once with
the same error. Then it removes all pair with same
target joint and force the joint have same target joint
to find another lowest error target. Then the “same
target joint problem” is solved.

3 Experimental results

3.1 Pose estimation accuracy

This network gets an L2 loss of connection map at
57.6 and an L2 loss of classification at 45.4. It means
that there is about 7% loss compared with current
state-of-the-art. Our network can detect humans with-
out large collision. If the human size is too large or
too small, it do not perform really well. However, for
Kinect-like usage, our network performs well. Many
detection results can be found at Figure 3.

3.2 Processing time

Network’s performance is tested on a set of devices.
Our network shows 9 to 10 times faster than current
state-of-the-art. The complex report is in Table 1. We

compare our result with current state-of-the-art Open-
Pose solution. The software environment is CUDA 9.2
and Tensorflow-gpu 1.10. This network is implemented
with tensorflow and Keras. The number of humans
does not affect the speed.

4 Conclusion and future work

In this study, we developed a real-time end-to-end
pose estimation network. We proposed the encoding
solution, the network architecture and the performance
report of our network. The experimental results show
our network can archive real-time speed on a lap-top
level computer with an affordable accuracy.

For future work, we proposed the solution to increase
the position accuracy by adding an inner offset. Using
inner offset to calculate the center position in high res-
olution can archieve higher accuracy without change
output resolution. Also, we are considering about re-
build left and right information in “Connection fix”
phrase. We just easily decide the side of shoulder and
pelvis based on body and head direction which can be
easily done by a simple classifier. Then we decide other
body parts’ side depending on shoulder and pelvis side
by connection information.

References

[1] Moeslund, Thomas B., and Erik Granum.: “A sur-
vey of computer vision-based human motion capture,”
Computer vision and image understanding, vol.81, no.3,
pp.231–268, 2001.

[2] Barris, Sian, and Chris Button.: “A review of vision-
based motion analysis in sport,” Sports Medicine, vol.38,
no.12, pp.1025–1043, 2008.

[3] Schall, Gerhard, et al.: “Global pose estimation us-
ing multi-sensor fusion for outdoor augmented real-
ity,” 2009 8th ieee international symposium on mixed
and augmented reality, pp.153–162, 2009.

[4] He, Kaiming, et al.: “Mask r-cnn,” in Proceedings of
the IEEE international conference on computer vision,
2017.

[5] Cao Z, Simon T, Wei S E, et al.: “Realtime multi-
person 2d pose estimation using part affinity fields,”
arXiv preprint, arXiv:1611.08050, 2016.

[6] Lin, Tsung-Yi, et al.: “Feature Pyramid Networks for
Object Detection,” in CVPRc, 2017.

[7] Lin T Y, Maire M, Belongie S, et al.: “Microsoft coco:
Common objects in context,” European conference on
computer vision, Springer, Cham, pp.740–755, 2014.

[8] S. Hochreiter and J. Schmidhuber.: “Long short-term
memory,” Neural Computation, vol.9, no.8, pp.1735-
1780, 1997.

[9] He, K., Zhang, X., Ren, S., and Sun, J.: “Deep resid-
ual learning for image recognition,” Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, pp.770–778, 2016.

[10] Woo, Sanghyun, et al.: “Cbam: Convolutional block
attention module,” in Proc. of European Conf. on Com-
puter Vision (ECCV), 2018.

[11] Redmon J, Farhadi A. “YOLO9000: better, faster,
stronger,” arXiv preprint, 2017.

[12] Kingma, Diederik P., and Jimmy Ba.: “Adam: A
method for stochastic optimization.”, arXiv preprint,
arXiv:1412.6980, 2014.

