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Abstract

Fabric quality inspection plays an important role in
the textile industry. As an effective approach to learn
data representations, autoencoder has been adopted for
defect detection. With the basic idea that the defect
area cannot be recovered by the model trained on non-
defective image patches, the residual is often used as an
indication for defect judgement. However, usually the
texture (non-defect) area in a defective patch also can-
not be well reconstructed, which makes the pixel-wise
detection inaccurate. In this paper, by exploring simi-
larities between different patches in the whole test im-
age, a novel autoencoder-based fabric defect detection
method is proposed. In order to maintain the texture
area in the reconstructed patch, the original encoded la-
tent variable is modified, and the cross-patch similarity
is introduced for determining the modification function.
The whole algorithm is conducted in an iterative way,
and the detection results will become better and bet-
ter. Experimental results on the benchmark datasets
demonstrate the effectiveness of our proposal.

1 Introduction

Fabric defect detection plays an important role in
quality control of textile industry. Traditionally, this
work is completed by human visual checking. Due to
the fact that many defects are small and have low con-
trast, manual operation is not only time-consuming,
but also unreliable. With the development of computer
vision, automatic fabric inspection has been widely
used. As the same time, fabric texture becomes more
and more complex and diverse, which makes the task
of quality inspection much more difficult. Therefore,
effective and efficient techniques for automatic fabric
defect detection are still in need.

Referring to the related surveys [1] [2], the most
popular fabric defect detection methods can be gen-
erally divided into four categories: statistical, spectral,
model-based and image-restoration-based ones. The
statistical methods [3] [4] distinguish defects through
various features, such as histogram and contrast, ex-
tracted from a local window. But they ignore the
global image information and are sensitive to noises.
The spectral methods [5] [6] [7] highlight the difference
between defects and non-defects in frequency domains
where Fourier, wavelet and Gabor transformations are

typical used tools. However, these methods usually
have poor performance for complex fabric images. The
model-based methods [8] [9] first utilize probability dis-
tribution models such as Gaussian mixture model to
represent the normal texture and then treat the areas
which do not conform with the model as defects. But
it is hard to detect small defects with low contrast. In-
spired by the approaches in image de-noising such as
sparse representation and low-rank decomposition, the
image-restoration-based methods [10] [11] [12] expect
to restore the non-defective version for the defective im-
age. However, these methods have high computational
complexity and usually generate many false alarms in
non-defective regions.

In recent years, deep learning has been widely used,
and its great advantages have been demonstrated in
many applications including defect detection [13] [14]
[15]. Most of these studies use supervised learning,
which requires a large amount of defective samples for
training. As a type of effective artificial neural net-
work to learn data representations in an unsupervised
manner, autoencoder has been adopted for defect de-
tection [16]. It first encodes the input image patch into
a latent variable, and then decodes the variable to re-
cover the input. For model training with non-defective
patches, the parameters are learned to make the re-
construction error as small as possible. The basic idea
for defect detection on the test image is that the non-
defective patches can be well reconstructed while the
defective ones cannot, and the reconstruction residual
can be used as an indicator for pixel-wise detection.
However, usually the texture area in a defective patch
also cannot be well reconstructed. Therefore, even the
defective patches can be exactly selected, the pixel-wise
detection results are often not accurate.

In this paper, we present a novel autoencoder-based
fabric defect detection method by introducing cross-
patch similarity. The reconstruction residual of each
test image patch is still adopted for pixel-wise defect
detection. To make the results more satisfactory, we
try to maintain the texture area in the reconstructed
patch. According to the observation that the texture
patterns are usually repetitive in the fabric image and
most of them are not defective, we modify the obtained
latent variable after patch encoding to make the de-
coded patch from the modified latent variable close to
its similar patches. In this way, if an input patch is
defective and its similar patches are not, the final re-
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constructed patch will also be non-defective. That is to
say, only the defect area cannot be well reconstructed
and thus can be effectively detected. Our proposed
algorithm is conducted in an iterative way, and the
results of existing autoencoder-based methods can be
used as its initial value. By repeatedly updating the
modified latent variable and the defect position, the
detection results will become more and more accurate.

The rest of the paper is organized as follows. Sec-
tion 2 describes our proposed autoencoder with cross-
patch similarity. Our experimental results are pre-
sented in Section 3, and it is followed by some con-
clusions and analysis of future work in Section 4.

2 Autoencoder with Cross-Patch Similarity

Our proposed fabric defect detection method mainly
includes a training stage and a test stage. For both
training and test images, some preprocessing opera-
tions, such as histogram equalization and other gray-
level transformations, can be adopted to enhance con-
trast and reduce influence of illumination [10] [11] [16].
In the following of this section, first the training stage
is introduced briefly since it is the same as the existing
methods, then the test stage is talked about in detail
as our key contribution.

2.1 Model training

The training stage of the existing autoencoder-based
fabric defect detection methods can be adopted here.
The patches from the available non-defective images
are utilized to learn an encoder function f : X → Z
and a decoder function g : Z → X , where X and Z
are spaces for image patches and latent variables, re-
spectively. The forms of the functions f(x), (x ∈ X )
and g(z), (z ∈ Z) are usually represented by multi-layer
neural networks, in which the parameters are optimized
by backward propagation. Besides the common idea
for minimizing the reconstruction error between x and
x′ = g(f(x)), other generalized techniques such as vari-
ational autoencoder and sparse autoencoder can also
be adopted. Since the same process is conducted, more
details are omitted here.

2.2 Model test

The flowchart for the test stage of our proposed au-
toencoder with cross-patch similarity is illustrated in
Figure 1. At first, the candidate defective patches are
selected. Then for each patch, the position of the pixel-
wise defect is determined and the latent variable after
patch encoding is modified. The two steps are itera-
tively conducted on the candidate patches for several
times. After the process has converged, the final defect
detection results can be obtained. Next we will discuss
each step in the flowchart one by one.

Figure 1. Flowchart for the test stage of our pro-
posed fabric defect detection method.

2.2.1 Candidate defective patch selection

The test image I is divided into non-overlapping
patches with the same size as those adopted in the
training stage. Each patch x is sent to the learned
autoencoder, the corresponding reconstructed patch
x′ = g(f(x)) and the reconstruction residual r = x−x′

are calculated. Since the autoencoder has been ef-
fectively trained from image patches without defects,
the non-defective patches in I should be well recon-
structed. Therefore, only the patches corresponding to
large reconstruction errors are selected for further anal-
ysis. That is to say, the set of the candidate defective
patches can be defined by

C = { x | ‖x− g(f(x))‖ > T1, x ∈ I } (1)

where T1 is a predefined threshold, and can be deter-
mined by the mean and variance of reconstruction er-
rors for the training image patches. Once the candi-
date set is constructed, the following operations are
only conducted on these patches. In this way, it will
not only relieve computational burden, but also reduce
false alarms.

2.2.2 Pixel-wise defect judgement

For each image patch in the candidate set, the re-
construction residual r is used as the direct indicator
for defect judgement, and the binary detection mask
for the pixel (m,n) is determined as

M(m,n) =

{
0, if r(m,n) > T2;
1, otherwise.

(2)

where T2 is another predefined threshold, and can be
decided by the statistics of pixel-wise reconstruction
errors in the training stage. The pixels labeled with 0
are judged as defects.



For each candidate defective patch, the reason for its
large reconstruction error is that it contains defect area
which does not appear in the training samples. How-
ever, when we use the encoded latent variable to re-
cover the input patch, it is impossible that the texture
area can be maintained while the defect area cannot.
In fact, some pixels in the texture area also cannot be
well recovered, while some of the reconstructed pixels
in the defect area are quite similar with the original
ones. Therefore, two problems exist in the pixel-wise
detection result based on the initial residual: high false
alarms in the texture area and low recall in the defect
area. In this paper, we propose the method of latent
variable modification to tackle these two problems.

2.2.3 Latent variable modification

We still want to use the patch reconstruction resid-
ual as an indicator for determining the pixel-wise detec-
tion results, thus the ideal case is that the texture area
can be well reconstructed while the defect area cannot.
Since it is difficult to directly distinguish texture area
based on the candidate patch itself, we try to resort
to other non-defective patches in the test image. As
we have already learned the latent representation for
image patches based on the learned autoencoder, our
basic idea is to use a suitable latent variable for non-
defective patches as a reference to modify the original
latent variable for each candidate defective patch.

For each image patch x in the candidate set, we first
find its K most similar non-defective patches in the
whole test image, and denote them as x1,x2, · · · ,xK .
We simply treat the patches that are not in the can-
didate set C as non-defective, and the similar patches
can be obtained based on some similarity measurement
of the pixel values in the image patches. To reduce the
negative impact of the defect area in x, the patch x is
masked with M, and it is expected that only the pixels
in texture areas are used for similarity calculation.

Let the latent variables for the candidate patch be
z and its similar patches be z1, z2, · · · , zK . To define a
reference latent variable to modify z, we calculate the
weighted average value z̄ for all the latent variable of
the K similar patches as

z̄ =

∑K
k=1 wizi∑K
k=1 wi

(3)

where wi (i = 1, 2, · · · , n) are weight coefficients, and
determined by the similarity between x and xi.

A modification function for the original latent vari-
able z is introduced and denoted as d(z). The function
can either be explicitly defined in a parametric form,
or be implicitly defined by a neural network. In our
experiments, a fully-connected layer with a weight ma-
trix W is adopted, then the modification function can
be simply written by

d(z) = Wz (4)

The parameter W is determined by solving an opti-
mization problem, whose cost function is an extension
of autoencoder and composed of two items. Like the
existing autoencoder-based methods, the first item is
about the masked reconstruction error and defined as

Q1 = ‖ (x− g(Wz)) ◦M ‖ (5)

where ◦ is the operation of element-wise multiplication.
M is adopted here as a mask since we just want to
reconstruct the texture area in the image patch. Note
that the parameters of the decoder function g(·) are
fixed. To introduce the constraint about cross-patch
similarity, we try to make the distance between the
modified latent variable and the reference variable as
small as possible, and define the second item as

Q2 = ‖Wz− z̄‖ (6)

By combining the two items together, we can get the
final cost function as

Q = Q1 + λQ2 (7)

and λ is a combination coefficient.
It should be noted that for the ideal case the repet-

itive texture patterns in the test image should be ex-
actly the same, but in the practical applications there
are some differences due to noises and distortions.
Therefore, if we over-emphasize the cross-patch simi-
larity and only take the item Q2 into consideration for
optimization, sometimes we cannot get satisfactory re-
sults, especially when the found similar patches are not
accurate. Besides, because the texture area in a defec-
tive patch cannot be reconstructed well by the trained
autoencoder, adding the masked reconstruction item
Q1 to the final cost function can enforce the modified
latent variables to better reconstruct the texture area,
which can also reduce false alarms.

2.2.4 Iterative refinement

After the optimal parameter W is calculated, the
original latent variable z is modified as Wz, and the
reconstructed image patch is updated as x′ = g(Wz).
Then the reconstruction residual and the pixel-wise de-
tection mask should also be re-calculated. Based on
the new mask M, we can find new similar patches for
each candidate defective patch, update the correspond-
ing weighted average latent variable z̄, and re-optimize
the parameter W. This process can be repeated for
several times until it converges, and the final obtained
defects will be more accurate than the initial results.

3 Experimental Results

3.1 Evaluation datasets

In order to verify the effectiveness of the proposed
algorithm, two public fabric datasets are used in our



experiments: TILDA dataset [17] and patterned fab-
ric dataset [18]. Our experiments are performed sepa-
rately on the two datasets. The TILDA dataset con-
tains the most common types of fabric defects. The
size of the fabric image is 768× 512. We select 51 non-
defective images for training and 100 defective images
for test. Since there is no pixel-level ground truth, we
only show the visual results of defect detection to eval-
uate our method.

The patterned fabric dataset is provided by Indus-
trial Automation Research Laboratory from the Uni-
versity of Hong Kong. It consists of 256 × 256 fabric
images belonging to three kinds of patterns: dot-, star-
and box-patterned fabric. Since the ground truth de-
fect masks are available, both quantitative and qual-
itative evaluations are performed on this dataset. As
similar conclusions can be made for the three kinds
of patterns, only the experimental results on the star-
patterned fabrics are illustrated in this paper. There
are altogether 25 defect-free images and 25 defective
images in the dataset, and the defects are classified as
five types: broken end, hole, netting multiple, thick bar
and thin bar.

3.2 Implementation details

For the autoencoder model, we adopt a Conv-
Deconv architecture. The encoder part consists of sev-
eral convolutional layers with kernel size 4×4 and stride
size 2 × 2. The following decoder part consists of sev-
eral deconvolutional layers with kernel size 4 × 4 and
stride size 2× 2. The dimension of the latent variable
for an image patch is set to 10. We randomly sample
image patches from non-defective images to train the
autoencoder. Different patch sizes are used on the two
datasets: 32 × 32 for TILDA dataset and 16 × 16 for
patterned fabric dataset. We implement the model us-
ing MXNet [19] framework and adopt Adam optimizer
with initial learning rate 0.001 to train this model for
300,000 iterations.

For parameter setting, the combination coefficient λ
is set to 1. The patch threshold T1 is set to 13 and the
pixel threshold T2 is set to 40, which are determined
according to experimental validation. The number of
similar non-defective patches K is set to 5. And the
refinement process is iterated for 2 times.

3.3 Results on the TILDA dataset

We first evaluate the performance of candidate de-
fective patch selection. Some results are given in Fig-
ure 2. From Figure 2(a) and Figure 2(b), we can ob-
viously see that the reconstructed images have large
discrepancy in the defect areas compared with the raw
images. This manifests that the trained autoencoder
can be used to well reconstruct non-defective patches.
Thus it is reasonable to select the candidate defec-
tive patches by the reconstruction errors. Figure 2(c)

Figure 2. Results of candidate defective patch se-
lection. (a) Raw defective images. (b) Recon-
structed images by the learned autoencoder. (c)
Candidate defective patches labeled in red.

shows the selected candidate defective patches by our
method. Most of the defect areas can be covered by
these patches. Hence it is an efficient way that the
refinement of pixel-level defect detection is just per-
formed on these candidate patches.

Figure 3 presents the detection results of compar-
ative experiments on various types of defects. Fig-
ure 3(a) shows the original defective fabric images. The
results in Figure 3(b) are obtained by the method that
the pixels in the candidate defective patches with large
reconstruction errors are directly selected as defects ac-
cording to the learned autoencoder (AE method). We
can see that some pixels in texture areas are taken as
defects while some pixels of real defects cannot be de-
tected, which are both caused by inaccurate reconstruc-
tion. From the results of our method in Figure 3(d), it
is noted that less false alarms appear in the texture area
and also more pixels in the defect area are detected.

To validate the effect of cross-patch similarity, we
remove the item of Q2 by setting λ to 0 in Eq. (7).
This means that we only optimize the reconstruction
item Q1 and the results are illustrated in Figure 3(c).
Comparing them with Figure 3(d), our method with
cross-patch similarity can find more defects (see the
regions in yellow ellipses) even at the regions with low
contrast (e.g., the second and the fifth rows in Fig-
ure 3). In addition, we can find less false alarms in the
texture area in Figure 3(c) compared with Figure 3(b).
This verifies the effect of the reconstruction item Q1

that the texture area in a defective patch can be better



Figure 3. Examples of detection on TILDA
dataset. (a) Raw defective images. (b) Results
obtained by the reconstruction residual of the au-
toencoder. (c) Results of our method without
cross-patch similarity. (d) Results of our method
with cross-patch similarity.

reconstructed to some extent.

3.4 Results on the patterned fabric dataset

For quantitative evaluation, the following three mea-
surement metrics are used: accuracy, recall and preci-
sion, and they are defined as

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Recall =
TP

TP + FN
(9)

Precision =
TP

TP + FP
(10)

where true positive TP and false negative FN refer to
the numbers of defective pixels which are detected as
defective and non-defective, true negative TN and false
positive FP refer to the numbers of non-defective pixels
which are detected as non-defective and defective.

We compare our proposal with the AE method
and the method based on image decomposition (ID
method) in [10]. Table 1 lists the results under the
three metrics in which the best ones are shown in bold.
First of all, compared with the AE method, our method
obviously has better performance on all the five types
of defects. This again verifies the effect of the latent
variable modification. Our method shows higher preci-
sion but lower recall than the ID method on most defect

Table 1. Quantitative results for each defect type
on the star-patterned dataset.

Defect Method Accuracy Recall Precision

Broken End
ID 97.58 75.62 17.64
AE 98.92 35.43 25.24
Ours 99.25 76.81 40.45

Hole
ID 97.16 72.34 33.29
AE 99.16 35.69 28.28
Ours 99.25 70.90 40.28

Netting Multiple
ID 98.75 82.19 56.60
AE 98.18 33.53 45.26
Ours 98.71 60.84 62.48

Thick Bar
ID 99.30 94.45 79.93
AE 96.45 15.62 35.64
Ours 97.02 45.48 55.97

Thin Bar
ID 94.98 81.59 13.86
AE 98.40 31.86 25.87
Ours 99.02 74.26 50.23

types. This is because our method mainly focuses on
correct detection for defective pixels and false alarm re-
duction for non-defects, while the ID method tends to
output a large and complete area for each defect. We
argue that the improvement for detection precision is
more difficult and more important in practical applica-
tions. Some examples of detection results for each type
of defects are given in Figure 4. From the results, we
can see that most of the defects are well detected by our
method and the generated masks are very similar to the
ground truth. Moreover, less false detection appears in
our detection results, which reveals that our detection
method is very robust to many kinds of defects and
thus has high detection precision. On the contrary, the
ID method often generates too many false alarms.

4 Conclusions and Future Work

In this paper, with the basic idea to maintain the
texture area in the reconstructed defective patch, a
novel autoencoder with cross-patch similarity is pro-
posed for fabric defect detection. To make use of the
repetitive texture patterns in the test image, the sim-
ilar non-defective patches for each candidate defective
patch are found, and their corresponding latent vari-
ables are weighted combined to be a reference for modi-
fying the original latent variable of the candidate patch.
Based on an iterative update process, the output for
each defective patch decoded by the modified latent
variable will be non-defective, thus the defect area in
the patch can be effectively detected from the recon-
struction residual.

For further work, we will try to improve the method
by introducing global information of the defect. In our
proposal, whether a pixel belongs to a defect area to-
tally depends on its reconstruction result, and the re-
lationship between defective pixels is ignored. Next we
will focus on the structure description for the whole
defect, and try to get better detection results based on
combination of both the pixel-wise reconstruction and
the overall characteristic of the defect.



Figure 4. Examples of detection results on star-
patterned dataset. (a) Raw defective images. (b)
Ground truth. (c) Results of ID method. (d)
Results of AE method. (e) Results of our method.
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