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Abstract

Anomaly detection remains a challenge in industrial
inspection, due to difficulty in designing suitable fea-
tures for classical methods and in collecting sufficient
samples for deep learning based methods. We propose a
novel Residual Squeeze-and-Excitation network to dis-
cover anomalies and inspect the quality of adhesives
on battery cell surfaces. Owing to a compact architec-
ture design and the utilization of an attention mecha-
nism based module, our network generalizes well with a
small amount of samples. A proper training setup fur-
ther ensures our network a satisfying performance on
a dataset constructed by ourselves. The network man-
ages to accurately and robustly judge the existence of
anomalies and adhesives and provide visual localization
of them in an image of the battery cell surface.

1 Introduction

Automatic industrial inspection is one of the most
important applications of computer vision technolo-
gies. Most of these inspection systems are centered
on detection of surface anomalies in the industrial pro-
duction environment. The appearance of anomalies,
such as scratches, cavities and tarnishes, varies hugely.
A qualified inspection system should be able to judge
whether anomalies exist given an image of the object
surface, and would be much appreciated if it could also
provide the localization information of these anomalies.

Classical methods for anomaly detection often fol-
low the same process, i.e., hand-crafted feature ex-
tractors followed by a trained classifier [1]. Hand-
engineering feature descriptors are crucial for these
methods. Deep learning based methods, which were
early introduced for surface anomaly detection by [2]
and [3], have shown significant advantages comparing
to the classical methods, especially in tasks where fea-
ture descriptors are difficult to design. The training of
a deep CNN often requires a large amount of training
data which are usually not available since positive data
samples, i.e., the images of object surfaces with anoma-
lies are rarely seen and costly to collect compared to
the normal samples. Such a problem commonly re-
sides in scenarios where anomaly detection is applied.
This situation motivates us to turn to a more reason-
able design of our network architectures and training
strategies.

In this paper, we focus on the detection of anoma-
lies on battery cell surfaces. Those anomalies can cause

Figure 1. Examples of the battery cell surface
(top left), with anomalies (top right), with ad-
hesives (down left) and with both of them (down
right).

the leak of chemical fluid inside battery cells and re-
sult in terrible accidents, thus makes the discovery of
them a crucial and necessary task. We also perform an
additional task of inspecting the quality of adhesives,
i.e., glue coated on battery cell surfaces for subsequent
sealing, simultaneously. Figure 1 helps illustrate our
problem, which can be regarded as two independent
classification tasks. Two scores between [0, 1] need to
be predicted, with one indicating the likelihood of the
existence of surface anomalies and the other suggest-
ing that of adhesives. Although image classification
is the most basic application of deep learning meth-
ods in computer vision, this task confronts a challenge
which makes it different from simple image classifica-
tion tasks: Both anomalies and adhesives appear to be
mini-scale, accounting for few pixels even in images col-
lected by an extremely high-resolution camera. With-
out the explicit guidance of localization of anomalies
and adhesives, it is hardly possible for an image clas-
sification model to spontaneously concentrate on these
sporadically distributed tiny structures, resulting in a
poor training effect.

Enlightened by [4], we split the model into a seg-
mentation and a classification stage. Given anno-
tated masks along with {0, 1} labels, the model will be
trained to segment the localization of anomalies and
adhesives from image background and then use seg-
mentation results to assist classification task. A novel
Residual Squeeze-and-Excitation network is proposed,
with a compact architecture design to learn from a
handful of training samples and an attention mech-
anism based module to perform detection more effi-
ciently and robustly. An optimum selection of loss
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function in training also helps ensure us a satisfying
performance of our approach on a dataset we construct
by ourselves.

2 Residual Squeeze-and-Excitation Net-
work

During the design of the architecture, several condi-
tions below are mostly considered:

(1) surface anomalies occupy small local regions in im-
ages, thus require the network to keep detailed
information which discriminates anomalies from
surrounding background.

(2) Although adhesives appear as slim bars in images,
they possess a unitary structure, which makes it
feasible to segment out each fragment of a bar
from surrounding regions without the need to cap-
ture a complex integral structure.

(3) Images with anomalies are very costly to collect in
the real industrial production environment. The
network should be able to fit well with a minimal
amount of training samples.

Generally speaking, in the premise of capturing suffi-
cient local receptive fields we should reduce the depth
and complexity of the network as much as possible,
due to the scarcity of training samples and the need
for detailed information.

In recent years, the attention mechanism has been
applied in many deep learning based methods, due to
its powerful function to re-allocate the computation
resource self-adaptively to most informative compo-
nents in processing each sample [6][11][12]. The at-
tention mechanism is especially useful for tasks with
limited training data, including industrial inspection
and anomaly detection tasks [10]. In order to utilize
the computation resource and representation capacity
of our compact network more efficiently, we propose an
attention-like module to enhance the network, named
”Residual Squeeze-and-Excitation” Module (”ResSE”
for short in the following context).

Residual Squeeze-and-Excitation Module:
The design of ResSE module is inspired by the Resid-
ual Attention [5] and Squeeze-and-Excitation [7] con-
cepts. As shown in figure 2(a), the input to a ResSE
module is a 3-D tensor F in ∈ RH×W×C , where H, W ,
and C representing the height, width, and channel di-
mension of a tensor respectively. We firstly perform
a spatially global average pooling operation, namely
squeeze, to aggregate spatially distributed information
in each channel as S ∈ RC :

Sc =
1

H ×W

H∑
h=1

W∑
w=1

F in
h,w,c (1)

The subsequent excitation operation aims to capture
a channel-wise dependency relationship by modeling a
nonlinear function of the spatially aggregated informa-
tion attained by the previous step, formulated as:

E = Sigmoid(k2 ×ReLU(k1 × S)) (2)

where k1 ∈ R
C
r ×C and k2 ∈ RC×C

r refer to parameter
matrix of two fully-connected layers. The bottleneck
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Figure 2. The proposed (a) ResSE module can
be flexibly incorporated into our network, which
consists of a (b) segmentation stage and a (c)
classification stage. Conv S in (b), and Conv C
and FC class in (c) denote the segmentation
layer, compression layer, and final classification
layer respectively.

reduction ratio r (8 in our implementation) serves to
control the number of additional parameters brought
by this module. Finally, we use the excitation result
E ∈ RC to modify the input tensor channel-wise and
get the output of our ResSE module as:

F out
h,w,c = (1 + Ec)× F in

h,w,c (3)

conforming to the residual learning criteria that given
the shortcut connection the performance should be no
worse than its counterpart without residuals, which
was firstly proposed in ResNet [8] and incorporated
into attention mechanism in Residual Attention [5].

Segmentation Stage: We build a very shallow
fully convolutional network architecture for the seg-
mentation stage, as shown in figure 2(b). This stage is
composed of three blocks, with the feature map spa-
tially downsampled by a factor of two at the head of
each block. The segmentation mask is predicted on
the top feature map with a 1/8× size of the input
image. Given the common goal to capture tiny local
structures, the anomaly and the adhesive localization
tasks share the extracted feature maps. As a channel
attention mechanism, the ResSE module can be in-
corporated into the segmentation stage to modify fea-
ture maps from any layer. Considering the tradeoff
between improved accuracy and model complexity we
design the architecture as shown in figure 2(b). Net-
works with various depths and with ResSE modules
placed at other alternative positions in the segmenta-
tion stage are also evaluated. Experimental results will
be discussed in section 4.3.

Classification Stage: In the classification stage
we follow the architecture proposed by [4], which com-
bines the top feature map and the segmentation re-
sult to predict a final classification score, as shown in
figure 2(c). The compression layer serves to adjust
the features extracted by convolutional layers above,



meanwhile reduce the model size to avoid overfitting
with limited training samples. We jointly adopt maxi-
mum and average global pooling to extract information
needed for classification from segmentation results and
compressed features, since such a combination can ro-
bustify the classification score.

Note that although attention mechanisms can be in-
tegrated into a deep CNN in various ways, We merely
import channel-wise attention into the segmentation
stage. Our segmentation task is achieved by a fully
convolutional neural network, thus makes spatial at-
tention mechanism meaningless. No attention mech-
anism is adopted in the classification stage, because
incorporating the segmentation result has provided ex-
plicit spatial attention. Besides this, the classification
accuracy mostly relies on the quality of the segmenta-
tion task, which can be improved by bringing in our
ResSE module in the segmentation stage. Further-
more, the classification stage itself contains rather few
parameters, which makes the implementation of any
attention mechanism to be costly and inefficient.

3 Training

The network training is split into two stages. In the
first stage, we ignore the gradients produced by classi-
fication error and train the segmentation stage for 200
epochs. In the second stage, we freeze the parameters
in the segmentation stage and run training on classifi-
cation task for 80 epochs. Such a stage-wise training
strategy provides the classification stage with sound
segmentation results and meaningful feature represen-
tations, leading to a more stable and faster conver-
gence. Note that during the training of the segmen-
tation stage, unlike in [4] where the pixel-wise mean
squared error is measured between the segmentation
results through a linear activation and groundtruth
masks, we append a sigmoid activation after the seg-
mentation layer and minimize the pixel-wise binary
cross entropy (CE) loss function, i.e.,

Lsegm =
1

BHW × 2

B∑
b=1

H×W∑
p=1

∑
c=1,2

CE(ŷb,p,c, yb,p,c)

(4)
We make this modification for the following two rea-
sons: (i) We prefer the segmentation stage learn a bi-
nary distribution rather than regress a continuously
distributed score for each pixel; (ii) Without a sigmoid
activation the output of the segmentation layer fed into
the classification stage will be restricted between (0, 1)
or (−1, 1) after the first stage training, thus weaken its
contributions to the classification stage. Experiments
in section 4.3 will prove the superiority of our choice.

In the training of the classification stage, the tradi-
tional binary cross entropy (CE) loss function is min-
imized, i.e.,

Lclass =
1

B × 2

B∑
b=1

∑
c=1,2

CE(ŷb,c, yb,c) (5)

In both stages loss functions are minimized on a batch
size of 16 using the AdamOptimizer [9] with the default
parameter settings suggested in the paper.

4 Experiments

4.1 The Dataset

We construct a dataset by ourselves to evaluate the
network. The images of industrial battery surface are
collected by a high-resolution camera, under which a
pixel approximately corresponds to a square with sides
of length 7 µm. As shown in figure 1, adhesives on the
surface present a rather unitary pattern, while anoma-
lies appear in various forms like scratches, cavities, and
traces left by corrosions.

The entire dataset consists of 591 train examples and
323 test examples with 512×1224 size and RGB chan-
nels. For each sample, the localization of these anoma-
lies and adhesives are roughly annotated with points
or broken lines and two groundtruth masks are later
generated according to these annotations. A value pair
y ∈ {0, 1}2 denotes the existence of anomalies and ad-
hesives in each sample.

Data Augmentation: In real industrial produc-
tion scenarios, the distance from the camera to the
battery surfaces can be versatile, thus results in multi-
scale views of battery surfaces. Given samples which
are collected by the camera from a fixed distance away,
we propose a data augmentation method to simulate
real scenarios and generate samples in various scales
during training. For each sample, a crop ratio δ no
less than the pre-defined threshold ∆ (0.75 in our im-
plementation) is randomly determined. Then a patch
with the same shape and δ× size as the original im-
age is randomly cropped from the original image. The
cropped patch is resized to a uniform input size and
fed into our network.

4.2 Setup

All of our experiments are ran with the same con-
figurations. Given an RGB input image of size
512× 1224, our network outputs two segmentation
masks of size 64× 153 and two classification scores for
surface anomalies and adhesives. The whole training
process costs 4 hours on a NVIDIA GTX 980 GPU
with 4GB memory. In the prediction, the network can
reach a speed of 25 fps with the same equipment.

4.3 Results

We evaluate the performance of our network in terms
of the classification robustness, namely the perfor-
mance with various classification threshold, for both
positive and negative samples for anomalies and adhe-
sives. The Average Precision (AP) metrics are mea-
sured for the trained network. We also evaluate the
performance of our network in terms of the true pos-
itive rate and true negative rate, i.e., the proportion
occupied by ones which are correctly identified in posi-
tive and that in negative test samples, under a specified
classification threshold which we set to be 0.7 as most
of classification tasks do in real scenarios.

Network Depth Selection in the Segmentation
Stage: We firstly remove the ResSE modules and
test the performance of baseline networks with various
depths. The segmentation stages of these baseline net-
works all conform to the three-block design rule men-
tioned in section 2, while differ in the number of layers



Table 1. Architectures of various baseline net-
works with a uniform three-block design.

network number of layers within each block
baseline v1 1, 1, 2
baseline v2 2, 2, 3
baseline v3 3, 3, 4
baseline v4 4, 4, 5

within each block as illustrated in table 1. As can
be seen in table 2, from baseline v1 to v2 we obtain
more powerful features for segmentation and final clas-
sification by increasing the network depth. However,
upgrading to baseline v3 only provides slight improve-
ments and baseline v4 even brings a drop in perfor-
mance due to overfitting. Experimental results prove
that the depth and complexity of our baseline network
design, namely baseline v2, fit well with the limited
amount of training data and meanwhile can save the
computational resource as much as possible. ResSE
modules should be incorporated into baseline v2 net-
work (baseline for short in the following context) for
better performance and efficiency.

Table 2. Performance of various baseline net-
works.

Performance on anomaly detection

network APpos APneg TPR0.7 TNR0.7

baseline v1 91.7 18.6 83.0 68.1
baseline v2 93.1 40.4 85.9 79.5
baseline v3 93.6 41.2 87.2 79.5
baseline v4 93.3 36.5 86.8 81.8

Performance on adhesive detection
network APpos APneg TPR0.7 TNR0.7

baseline v1 99.3 90.8 92.7 100.0
baseline v2 99.3 91.8 92.7 100.0
baseline v3 99.4 92.5 91.4 100.0
baseline v4 98.4 91.3 94.7 100.0

Benefits from the ResSE Module: We make a
comparison among networks with various architectures
regarding their performance. Table 3 illustrates their
respective structure designs. As shown in table 4, all
the networks with additional ResSE modules surpass
the baseline network more or less, while the ResSE
v1 network performs best. Such a result accords with
our theoretical expectation, since the channel attention
mechanism has little effect while being placed at bot-
tom layers due to the close inter-channel correlations
at that stage (ResSE v2 ), and has no opportunity to be
effectively utilized by subsequent layers if being placed
at top layers (ResSE v3 ). Therefore, we choose this
version for subsequent experiments and real applica-
tions.

Loss Function Selection in the Segmentation
Stage: We have analyzed the loss function setup
for the segmentation stage training in section 3. Here
we test the effects of different loss functions on ResSE
v1 network and the results conform to our theoretical
analysis, as shown in table 5.

Qualitative Analysis: We further perform a
qualitative analysis of our network in terms of its seg-
mentation results. Several test samples are depicted

Table 3. Structure designs of various architec-
tures, including baseline, i.e., the network with-
out ResSE module incorporated.

network layers followed by ResSE modules
baseline without ResSE modules

ResSE v1 Conv 2 1, Conv 3 1
ResSE v2 Conv 1 2
ResSE v3 Conv 3 2, Conv 3 3

Table 4. Performance of various architectures.

Performance on anomaly detection

network APpos APneg TPR0.7 TNR0.7

baseline 93.1 40.4 85.9 79.5
ResSE v1 94.7 41.4 89.8 89.8
ResSE v2 93.4 41.2 87.7 78.4
ResSE v3 93.8 40.9 86.4 81.8

Performance on adhesive detection
network APpos APneg TPR0.7 TNR0.7

baseline 99.3 91.8 92.7 100.0
ResSE v1 99.7 98.8 96.1 100.0
ResSE v2 99.5 98.8 93.4 100.0
ResSE v3 99.2 94.2 93.4 100.0

Table 5. Effects of various training strategies.

Performance on anomaly detection

activation + loss APpos APneg TPR0.7 TNR0.7

linear + MSE 90.6 5.8 81.7 71.6
sigmoid + MSE 94.6 35.7 87.6 88.6
sigmoid + CE 94.7 41.4 89.8 89.8

Performance on adhesive detection
activation + loss APpos APneg TPR0.7 TNR0.7

linear + MSE 99.6 87.1 92.1 100.0
sigmoid + MSE 99.6 98.2 94.7 100.0
sigmoid + CE 99.7 98.8 96.1 100.0

in figure 3 and 4, with annotated and predicted fore-
ground masks pasted onto them. Adhesives are often
easy to identify due to their unitary structure. Our
network can robustly recognize and localize anomalies
with various appearance, as shown in figure 3.

However, because of their diversity in appearance,
our network fails to identify some of the anomalies
which are rare in training samples like in figure 4(a)
and 4(b). Besides this, some artifacts like wrinkles or
tarnishes, which should not be classified into anoma-
lies, are segmented out due to their distinction from
surrounding areas like in figure 4(c) and 4(d). More
complex and deeper architectures seem to be required
for capturing such structures. Therefore, our future
work should concentrate on collecting more data sam-
ples to increase our generality and optimizing the
network architecture design concerning the tradeoff
between mini-scale structure and large-scale complex
structure identification.



Figure 3. Examples of test samples that are cor-
rectly localized and classified by our network.

Figure 4. Examples of test samples that are
wrongly localized and classified by our network.

5 Conclusion

In this work, we propose a novel ResSE network
based on deep convolutional neural network for the
inspection of anomalies and adhesives on battery cell
surfaces. Concerning the characteristics of the data
samples, we design a very compact network architec-
ture and import ResSE modules to utilize its repre-
sentation capacity and computation resource more ef-
ficiently. The network achieves satisfying performance
on our dataset by accurately predicting the existence
and localization of anomalies and adhesives in sample
images. Due to its compactness and effectiveness, we
believe that our work can be easily transferred to a
similar domain with slight configuration and hyperpa-
rameter adjustments.
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