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Abstract

Welding joints inspection for surface quality evalu-
ation remains a lot of challenging work because of the
difficulty in extracting suitable features. We propose a
novel residual attention network for automatic inspec-
tion of the quality of welding joints. Our network has
the ability to extract more useful features while main-
taining a compact structure. Owing to the regulariza-
tion effect of the alpha robust loss we design, our model
has enough generality capabilities with limited training
samples. In the end, we evaluate the performance of
our network on a dataset consisting of welding joints
images with score-labelled imperfections, and our pro-
posed method achieves satisfying results in terms of
welding joints inspection by predicting quality scores
accurately.

1 Introduction

Welding is one of the most important and most of-
ten used methods for joining pieces together. In order
to ensure that the end-product is defect-free, visual in-
spection system plays a vital role in industrial inspec-
tion due to its convenience and low cost [2]. However,
the welding joints inspection is a critical process but
not easy to address. The quality of welding should be
evaluated by a score based on the degree of the im-
perfections on the welding joints. Just as shown in
the Fig 1, various imperfections can lead to the dis-
qualifications of examples, like welding wrinkles, mix-
tures between joints, insufficient welding, and excessive
welding.

Traditional methods in visual inspection system like
statistical pattern recognition, expert systems and hu-
man monitoring, are constrained by the crucial inspec-
tor training, the need for expert experience, the lack of
the adaptability to the working conditions and so on
[11].

Convolutional neural network (CNN) [7] solves this
problem by extracting problem-specific features auto-
matically directly from the data, which makes it more
popular in industrial inspection due to the high pro-
duction rates of automated production lines [12]. Fur-
thermore, lots of new ideas and improved model archi-
tectures in the domain of CNN have been proposed in
the past few years. Particularly, with a deep residual
learning framework, a ”very deep” CNN can be opti-
mized easily and higher accuracy could be gained from
the increased model size. Another remarkable thing is
the successful application of the attention mechanism
of human perception [9, 5] in various image prediction

Figure 1: Examples of welding joints with different
quality score. From the leftmost column to right, the
quality of the welding joints deteriorates as the score
below the images decreases, while the quality has the
same score in one column.

tasks such as images caption[8] and visual question an-
swering [6].

However, a normal CNN model requires large data
sets for training on account of the thousands of or even
more parameters in a normal network. In the indus-
trial inspection, however, not all the collected data are
ideal sample data sets for the need for training. Con-
sequently, efficient learning from such limited data sets
depends on the more elaborate structural design of the
network and more optimum training implementation.

This paper proposes a novel Residual Attention Net-
work for automatic inspection of welding joints. We
approach to solve this inspection task as an graded
score regression based on the gradual changes in qual-
ity level of welding joints rather than an imperfections
classification whether the sample is qualified. With
the architecture of residual attention mechanism, our
network can extract sufficiently powerful features on a
limited set of labelled training examples while main-
taining a compact structure. By using robust alpha
loss function, our network is regularized and thus can
be trained with less over-fitting. For a given image
of welding joints captured by a digital microscope, the
trained network outputs an accurate score proportional
to its quality. The benefit of the proposed structure
and training strategy is verified on the dataset we con-
struct, on which it gains satisfying performance.

2 Residual attention network

Generally, CNN has standard structure that the out-
put of the features extractor, which consists of stacked
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Figure 2: An illustration of our residual attention network. Our model has two branches followed by 1
fully connected layer. A 1024-dimensional vector pooled from features map via global average and max pooling
layer is fed into the classifier to assign the input examples a score.

convolutional and pooling layers, can be directly input
into the classifier. And this typical structure without
any additional branch can be called a plain network.

Inspired by residual connection [7], our novel resid-
ual attention network as shown in Fig 2 has done some
improvements on the basic design of plain network,
which is comprised of two specific branches: one for
extracting feature named backbone branch, the other
used as a feature selector named attention branch. We
expect that the adding of our soft attention module is
similar to the idea of generic shortcut connections in
residual learning, where the performance should be no
worse than plain network.

The backbone branch outputs B(x) given input x,
and the attention branch outputs the weight mask
A(x) with the same size of B(x). Thus the output of
the residual attention branch in our network is utilized
as

Fi,j,c(x) = (1 +Ai,j,c(x)) ∗Bi,j,c(x) (1)

where (i, j) represents the spatial position of a feature
map and c is the index of the channel of the output.
F (x) is the network’s real output after the combination
of backbone and attention branch. The element-wise
multiples are performed on two feature maps, channel
by channel.

It’s obvious that the F (x) will approximate the orig-
inal features maps B(x) extracted by the backbone
branch when the A(x) approximates 0. We assume
that it’s easier to optimize the structure with atten-
tion branch than plain one only with backbone branch.
Even in the worst case, if the backbone branch learn-
ing were optimal and any disturbance in the param-
eters would result in a loss in the optimal result, our
attention branch can avoid this loss by simply leaning
all the response activations to zero.

Backbone Branch: The backbone branch of the net-
work consists of three resnet stages as shown in Fig
2, and the task of this branch is extracting valid
features for final score regression, which can be

interpreted as the network’s confidence that the
given example’s quality is up to standard. One
resnet stage is made up of several resnet blocks
and we use two convolutions before the addition
in each residual block same as [7]. So we use[
k × k f
k × k f

]
×num to denote a resnet stage in Fig-

ure 2.

Attention branch: The attention branch will im-
prove the backbone branch features instead of
learning the desired but complicated functions di-
rectly. We insert the attention module as shown in
Fig 2 in the plain network by making the output
of first convolutional features be the input of at-
tention module. After three convolutional layers,
we combine two branches like equation 1 before
the FC layer. In this way, attention module can
enhance the good features and suppress the less
useful ones from backbone branch, and the net-
work achieves spatial and channel attention with
little computation cost.

Global spatial pooling: Instead of adopting the
traditional fully connected layers in the end of network,
we output the spatial pooling of features maps to the
FC layer via a global max and average pooling layer.
The usage of global max and average global pooling
will give better robustness to the network while main-
taining high sensitivity to texture information in im-
ages [4]. Besides, the global spatial pooling summing
out the activations of every features will make the net-
work learn to be invariant to those spatial transforma-
tion.

We should avoid representational bottlenecks when
designing a convolutional network [3]. Therefore, if the
feature map size is halved, we double the number of fil-
ters in order to preserve the network’s ability of repre-
sentation. At the end of the network, the classification
score of a single example will be regressed via 1024-d



FC layer followed with a sigmoid activation function
and a magnification of 100 which will remap the quality
score to a regression value from either [0, 100].

3 Alpha robust loss function

We usually use squared loss L (a) = a2 and the ab-
solute loss L (a) = |a| in regression, where a is the dif-
ference between the labelled and predicted value. Con-
sidering that our score is a random number distributed
from [0, 100] but the annotated scores are only multi-
ples of 20, we design a more robust loss function with
parametric variable α as:

L (ŷ, y) =

{
0.1 |(ŷ − y)|α |ŷ − y| ≤ 10

0.1α |(ŷ − y)| − α+ 1 otherwise.
(2)

where ŷ is the predicted score while y is the labelled
one. And parametric variable α is a hyper-parameter
depending on a specific problem. This robust loss is al-
ways continuous and differentiable to ensure the train-
ing of network and also inherits the advantages of two
loss functions as shown in Fig 3. Note that, as the para-
metric variable increases, the loss function gradually
transitions from L1 loss when α = 1 to huber loss when
α = 2, followed by more robust functions when α > 2.
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Figure 3: Alpha loss func-
tion

The specific loss is
less sensitive to out-
liers compared to the
squared loss when the
distribution is heavy
tailed, but also can
minimize the impact
of small score differ-
ence. It can be ex-
plained that the spe-
cial loss function will
penalize predicted er-
ror more strictly when
score difference |ŷ − y|
is closed to 10 and
the loss value is com-

pressed when |ŷ − y| is closed to zero due to the high-
order power, so that the error tolerance of the network
is improved which can reduce the over-fitting.

In other words, we want our network to be less confi-
dent to avoid assigning full probability to the score just
as we labelled. the quality of welding joints should not
be distributed only to those scores we labelled, but
should have small change, depending on its degree of
imperfections. Besides, the actual difference between
the two example with a score difference of less than 10
is not very large which means that a slight change in
imperfection will make the score of the example fine-
tuned. Moreover, this loss has a minimum gradient in
the compressed area which can regularize our model
and make its training more stable similar to the func-
tion of learning rate decay which can be regarded as a
coarse-to-fine training strategy.

We notice that there are also some other well-known
robust loss functions, such as log-cosh loss and quantile
loss. The log-cosh loss has the advantages of the square
loss, but will not be strongly affected by the occasional
wildly incorrect prediction, which is similar to our al-
pha loss function. And the quantile loss function turns

out to be useful when we are interested in predicting an
interval instead of an accurate point. This special loss
tries to give different penalties to overestimation and
underestimation based on the value of chosen quantile
value. We will discuss these robust loss functions with
their performance in this specific task later.

4 Experiment

4.1 The dataset generation

We construct a dataset to evaluate the network. Im-
ages were captured by a digital microscope VHX-5000,
and labelled scores of these images are annotated by
professional experts in order to ensure the correctness
of the dataset. As you can see in Figure 1, the ex-
amples’ quality are diverse depending on the different
deteriorations like welding wrinkles, mixtures between
joints, insufficient welding and excessive welding. The
labelling task is to assign a score between 0 and 100 to
an example of welding joints based on its quality. We
refer to a given example with a score close to 100 as
positive if the example is standard while one labelled
with a score close to 0 will be classified as a substan-
dard example.

The entire dataset consists of 2000 training examples
and 500 testing examples. Every example image of
448×336×3 pixels is labelled with a graded score which
is one of multiples of 20 from 0 to 100, due to fact that
the precise score labelling works of the welding solders
are costly and can be different from people to people.
Therefore, we have adopted the labelling method of
only using multiples of 20 as score values and roughly
divide these examples into 6 categories based on the
scores labelled, which can increase the feasibility of
labelling task and its correctness to a certain degree.

The actual distribution of the quality of welding
joints is not discrete over the six score values as la-
belled, but should be continuously distributed between
0.00 and 100. Considering this fact, we recommend
solving this inspection task as score regression prob-
lem rather than a binary or multi-class classification
to gain better performance.

4.2 Implementation details

Data Augmentation: To reduce the overfitting
and learn features efficiently from limited image data,
we employ two distinct forms of data augmentation.
The first is generating image by horizontal reflection,
vertical reflection and rotation with a random small an-
gle. This method significantly increases the diversity
of our training dataset and prevents our network from
potential overfitting. The second form of data augmen-
tation is changing the sequence of the RGB channels
of original images, which forces the nerwork to extract
features from the structure and texture information of
one example, rather than from color information.

Hyper-parameter Setting: In order to maintain
the generality of our network, we define the hyper-
parameters as follows. The learning rate is initially
set to 1 × 10−3 with exponential decay of 0.95 ev-
ery 1000 steps to lower the learning rate as the train-
ing progresses. The batch size of SGD in training
is 8 examples, while we train our network for 200
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Figure 5: Testing error during training procedure. (a)
with different structures; (b) with different losses.

epochs. Additionally we set the factor of L2 regular-
ization λ = 1×10−5 to avoid overfitting. Training this
compact network took around 6 hours on our system
equipped with one NVIDIA 1080Ti GPU.

4.3 Results

We evaluate the performance of our network in terms
of the true predicted examples, which with the differ-
ence between their predicted scores and labelled scores
does not exceed 10 according to the compressed area of
our loss function. And the accuracy of a model is mea-
sured by the proportion of the true predicted examples
in the test dataset.

Figure 4: Three Examples illustrating that different
images have different corresponding activations of the
attention branch in our network.

Analysis of Attention: Fig 4 verifies the validity
of our attention branch. The left side of the stitched
image is the input image, and the right is the visual
output of the 147th channel of the attention branch,
where the greater the brightness, the greater the weight
to attention the features. It’s obvious that our feature
branch will pay attention to the characteristic struc-
tures in the examples, such as the deteriorating areas,
thus will greatly accelerate the converge of the network
as a feature selector.
Ablation Experiments: Our experiments mainly

aim to verify the validity of the attention branch and
the training strategy we proposed. The analysis of
these factors in the network is represented in the Fig 5.
The structure of the network can be discussed in gen-
eral from the plain network and our residual attention
network (RAN). On the basis of the either structure
we can model the inspection task as either a 6-class
classification problem denoted CLASS-6 or a score re-
gression task for the examples denoted REG. We also
explore the impacts of different loss functions, such as
the L2 and four kinds of α losses.

In order to verify that our alpha loss is robust
enough, we also do some comparison experiments with
other robust loss functions, whose curves shown in Fig
6 (a). Under the premise of keeping the network struc-
ture and score regression mechanism unchanged, we

replaced our alpha function with log-cosh and quan-
tile loss function. Unlike the log-cosh is free of hyper-
parameter , the quantile loss function must choose a
quantile value based on whether we want to give more
value to positive errors or negative errors. Consider-
ing the symmetry of the distribution of dataset sam-
ples, we set the quantile vale γ to 0.25 and 0.75. When
γ = 0.75, for concreteness, the over-guessing prediction
by a certain amount will give penalties three times as
much as under-guessing one by the same amount.

Main Results: Consistent with our prior assump-
tions, Fig 5 (a) indicates that the additional attention
branch and the score regression mechanism manage
overcoming the optimization difficulty and gain better
performance ), while any α loss function in the RAN
contributes towards better robust performance com-
pared with the L2 loss and makes the network learning
more efficient, shown in Fig 5 (b).
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Figure 6: (a) Different robust loss functions; (b) Test-
ing error during training procedure.

Table 1: Accuracy of various versions of the network

plain network RAN

CLASS-6 83.1% 87.3%
REG-L2 90.3% 91.5%

Log-Cosh 93.1% 94.6%
Quantile0.25 91.3% 92.7%
Quantile0.75 91.2% 92.7%

REG-α1 92.9% 93.7%
REG-α2 93.2% 94.6%
REG-α3 93.8% 95.7%
REG-α4 93.9% 94.3%

In Table 1 we show the performance of different op-
tions of the network structure with different loss func-
tions in detail. From this we can see the score regres-
sion solution is considerably better than the classifi-
cation solution with an about 5% improving margin.
While the attention network is minimally better than
plain network with improving the accuracy by about
1 ∼ 2%. Moreover, The alpha loss is slightly better
than traditional L2 loss but this is still a saturation
phenomenon that the effect of improving accuracy is
not obvious when the α increases. Owing to these op-
tions, our network reaches the better performance with
accuracy of 95.7%.

As can be seen from these function curves in Fig 6
(a), other well-known loss functions are also more ro-
bust to outliers than L2 loss. The comparison between
the error rate of these models, between which only the



chosen loss functions are different, reveals the alpha
loss we designed can acquire similar performance of
other well-known robust loss functions, and even bet-
ter, shown in Fig 6 (b). More specifically, our alpha
loss achieves the strong performance similar to log-
cosh loss, while maintains a simpler calculation. At
the same time, our alpha loss is obviously better than
the quantile loss, with a higher precision advantage of
about 2% .
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Figure 7: The testing results obtained by our proposed
model. The ground truth score (GS) labelled by ex-
perts and the prediction score (PS) are posted in the
upper corner of the sample images.

Figure 7 shows some typical results predicted on the
test dataset by our proposed residual attention net-
work. It demonstrates that our approach can evalu-
ate the quality of welding joints with satisfying perfor-
mance, robust to variations in brightness, texture and
shape. Promising prediction results are achieved even
when the imperfections of joints is cluttered.
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Figure 8: Failed cases, whose difference between their
predicted scores and labelled values exceeds 10.

However, there are still a small amount of failure
cases. Typical failures are presents in Figure 8. We
speculate that these errors are due to the lack of the
similar training samples and the useful features are not
extracted. Because of this, the network only notices
the texture of joints and lacks global information. We
think these failure cases might be solved by increasing
the similar training samples in the future.

5 Conclusion

In this work, a novel CNN-based network for au-
tomatic welding joints inspection is proposed. The
proposed method is practical and can learn features

efficiently from limited dataset due to the resultful
residual attention network, which has two dedicated
branches. Benefitting from the attention branch and
the α loss function, our network converges faster with
lower risk of over-fitting during training. The per-
formance of the network we design is evaluated on a
dataset consisting of images of welding joints with their
score labelled by experts manually. We achieve satis-
fying results on visual inspection for the welding joints
by predicting quality scores. Besides, we believe that
the approach of automatic inspection with deep learn-
ing techniques also has potential application prospects
in other different industrial automation domains.
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