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Abstract

In person re-identification, Keep It Simple and
Straightforward MEtric (KISSME) is known as a prac-
tical distance metric learning method. Typically, ker-
nelization improves the performance of metric learn-
ing methods. Nevertheless, deriving KISSME on a re-
producing kernel Hilbert space is a non-trivial prob-
lem. Nystrém method approximates the Hilbert space
i low-dimensional Euclidean space, and the applica-
tion of KISSME is straightforward, yet it fails to pre-
serve discriminative information. To wutilize KISSME
i a discriminative subspace of the Hilbert space, we
propose a kernel extension of Cross-view Discriminant
Analysis (XQDA) which learns a discriminative low-
dimensional subspace, and simultaneously KISSME in
the learned subspace. We show with the standard kernel
trick, the kernelized XQDA results in the case when the
empirical kernel vector is used as the input of XQDA.
FEzxperimental results on benchmark datasets show the
kernelized XQDA outperforms XQDA and Nystrom-
KISSME.

1 Introduction

Person re-identification (re-id) [1] is a challenging
problem of finding the same persons from images cap-
tured in different camera views, which often cause
substantial appearance changes, e.g., view angle/body
pose/illumination changes, and background clutter.

One of the most critical steps in person re-id is the
distance calculation for matching the feature descrip-
tors extracted from person images.

Distance metric learning obtains a robust and dis-
criminative metric from training data. Until now,
researchers have developed various metric learning
methods and shown promising results in person re-
id [2, 3, 4, 5, 6]. Among them, Keep It Simple and
Straightforward MEtric (KISSME) [3] is one of the
most popular metrics due to its simplicity and effec-
tiveness.

KISSME [3] considers two independent generation
processes for modeling the differences of feature de-
scriptors for similar and dissimilar pairs. In particu-
lar, it assumes a zero-mean Gaussian distribution for
each pair. As in the Quadratic Discriminant Analysis
(QDA) in statistics, KISSME performs a likelihood-
ratio test of the two Gaussian distributions to judge if
an input sample pair is similar or dissimilar. From the
likelihood-ratio test, KISSME derives a Mahalanobis
metric straightforwardly. In computation, it requires
only two inverse covariance matrix estimations and a
projection operation of a matrix into a cone of Positive
Semi-Definite (PSD) matrices.
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The feature descriptors for person re-id tend to
be high-dimensional. Besides, the number of train-
ing samples is small because obtaining a sufficient
number of the samples are mostly infeasible due to
the requirement of tedious labeling efforts for hu-
man operators. Consequently, KISSME may yield
poor estimation of covariance matrices, thus leading
to poor generalization ability. A common practice
to circumvent this problem was the projection of fea-
ture descriptors into a Principal Component Analysis
(PCA) subspace before applying KISSME [3]. Instead
of PCA, Cross-view Quadratic Discriminant Analysis
(XQDA) [5] applies discriminative subspace learning to
keep discriminative information in the original feature
space, which typically produces better performance
with lower-dimensional subspace.

Distance metric learning on Reproducing Kernel
Hilbert Space (RKHS), namely, kernelized metric
learning method, often produces superior results in
person re-id [7]. Zhao et al. [8] showed that the dis-
tribution of sample difference on existing person re-id
features is irregular and undulant while the difference
on the kernel transformed feature vectors tends to obey
a Gaussian distribution. Based on this analysis, they
used empirical kernel vectors as the input of KISSME
and showed improved results.

However, compared to other metric learning meth-
ods, kernelizing KISSME is a non-trivial problem be-
cause it has difficulty in handling the inverse covariance
matrix and the projection operation in RKHS [9, 10].
The corresponding KISSME algorithm in the Hilbert
space is unclear for the kernelized KISSME which only
uses the empirical kernel vectors as input [8]. Faraki
et al. [9] proposed a kernelized version of KISSME
via infinite dimensional covariance matrices, yet the
strict kernelized version adopts an iterative optimiza-
tion on a Riemannian manifold. Consequently, it is
much more complicated than KISSME in the origi-
nal feature space. Nystrom method [11] approximates
RKHS in low-dimensional Euclidean space and main-
tains the simplicity of KISSME, yet fails to preserve
discriminative information in RKHS.

To utilize KISSME in a discriminative subspace of
Hilbert space, we propose a kernel extension of XQDA.
We show that with the standard kernel trick, the ker-
nelized XQDA coincidences with XQDA when the em-
pirical kernel vector is the input of XQDA. We think
the reason the kernel version of XQDA remains unex-
plored is probably due to the lack of theoretical un-
derstanding behind XQDA. As a supplement of this
problem, we also examine the suitability of the dis-
criminative subspace of XQDA for any of Mahalanobis
metrics.



2 Review of XQDA

We briefly review XQDA, which is built on two com-
ponents; KISSME and discriminative subspace learn-
ing through maximization of generalized Rayleigh quo-
tient criterion. At a glance, the suitability of the
subspace for the KISSME might be not obvious be-
cause the generalized Rayleigh criterion is unaware of
the Mahalanobis metric. The following subsection de-
scribes the respective components of XQDA. We then
examine the suitability of generalized Rayleigh quo-
tient criterion for any of Mahalanobis metrics

2.1 KISSME

Assume we have a training dataset {z;,l;,c;}Y ,
where x; € R? is a d dimensional sample, [; € {1, ..., L}
is a person ID and L is the number of persons, ¢; €
{1,...,C} is a camera ID and C is the number of cam-
era views and NV is the number of training samples. Let
S =A@ ) =1 ci # ¢j}, D={(0, )|l #j,ci # ¢;}
be sample index sets of similar and dissimilar pairs on
the training dataset, respectively !

The squared Mahalanobis distance between samples
(@i, ;) is defined as
(zi — x;)" M (x; — x;), )]
where the Mahalanobis matrix M > 0 is a PSD matrix.

In KISSME [3] and XQDA [5], M is learned based
on a likelihood-ratio test of two zero-mean Gaussian
distributions, of similar and dissimilar pairs. The dis-
similarity hypothesis is defined as follows:

dyy(zi, ;) =

(@ —x) "X (X —x;)
) )
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where ED = NLD Z(i,j)eD(wi_wi)(wi_wj)T and ES =
NLS Z(i,j)es(wi_wi)<wi_wj)T
of sets S and D, respectively.
By taking the log and omitting constant terms, the
Mahalanobis matrix is obtained as M = Proj(ZE1 -
"), where Proj(-) means the projection into the cone
of PSD matrices for the guarantee of a valid metric.

are covariance matrices

2.2 Discriminative subspace learning

The objective of dimension reduction of XQDA is
to seek optimal linear projection W= [wy,...,w,] €
R¥7(r < d) of the data, so that discriminative
properties are preserved in the projected data y €
R" = W'z when the KISSME is applied in the
project space. In the subspace, the covariance ma-
trices become Xy = WIS gW and ), = WIS, W,
Thus, the KISSME on the subspace becomes M' =
Proj(Zg ! — = ).

Given a projection matrix W and Mahalanobis met-
ric M, the distance function becomes as follows:

(x; — ;) " WM'WT (x; — x;). 3)
Note that the Mahalanobis matrix on the original fea-
ture space is obtained as M = WM' W7,

IXQDA admits sample pairs only drawn from different camera views.

diy ar (i, x5) =

A direct optimization of d%‘,’ o s difficult due to
the inclusion of W in two inverse covariance matri-
ces [5]. Instead, XQDA greedily optimizes each pro-
jection basis w so that the ratio of variances of the
similar and dissimilar pairs, g, op is maximized. Be-
cause o5(w) = wI'Vgw and op(w) = wIYpw, it
corresponds to the generalized Rayleigh quotient cri-

terion J(w) = Zg((:uv)) = %;é?,}g Thereby, XQDA re-

duces to the generalized eigendecomposition problem,
similar to Fisher’s discriminant analysis [12, 13].

2.3 Generalized Rayleigh quotient criterion in
metric embedded space

A greedy maximization of generalized Rayleigh quo-
tient criterion is equivalent to the maximization of the
ratio trace objective J(W) = Tr ((X%) (X)) where
Tr() is the trace of matrix [14].

Because M’ is a positive-semidefinite matrix, there
exists matrix square-root M’ 3. The transformation
of the samples as ¥y’ € R" = M'*WTz emebeds the
Mahalobis metric M into a Euclidean space. We con-
sider the covariance matrices on the metric embedded
space Xy p = M2WISp,WM'2 = M'2S, Mz,
Yums = M’z Eng'% and examine the maximiza-
tion of the ratio trace in metric embedded space
JW,M) = Tr ((Zam,s) " (Em,p)). The following
proposition holds:

Proposition.1 The objective function for ratio trace
mazimization is invariant under the embedded metric.

Proof. We see that
J(W, M) Tr

Y(Zwm,p))

(Zas)”
- Tr( M3 M)~ (M’%sz’%))
(

- T M’*% )M TEMIES M’l)

= Tr((Z ) = J(W). “)

In this way, the existence of any Mahalanobis metric
on the projected subspace has no influence on the ratio
trace objective function 2. This proposition holds true
regardless of whether W' is included in M’ or not.
As such, XQDA maximizes the generalized Rayleigh
quotient criterion on the embedded space of KISSME.

3 Kernelized XQDA

We present a kernelized version of XQDA (KXQDA)
with the standard kernel trick [15]. The idea of
kernel trick is to map input samples by non-linear
mapping ¢(-) from R? to RKHS H where the in-
ner product of sample x; and x; is defined by
a kernel function k(z;,z;) = ¢(z;)T¢(z;). In
‘H, the covariance matrices would be defined as
En.0 = §g .yen(0(@i) — o(@;))(d(x:) — ¢x;))"
and g5 : apes(@(@i) — o(x)))(b(m:) —
#(x;))T. Though KISSME would be obtained as
My = Projy (5, — Eq_{,lD), the derivations of the

2The Fukunaga’s book [12] also shows the invariance of the ratio trace
problem under the non-singular square matrix multiplications to the co-
variance matrices (Chapter10, Eq.(10.15)).



inverse covariance matrices and the projection opera-
tion in ‘H are not obvious.

Let us consider learning the linear projection bases
Wy = w1, ..., Wy ] which map feature ¢(x) in H
to R” as W1 ¢(x). The likelihood-ratio test in the
subspace derives the following Mahalanobis distance:

&y, v, (i ;) ®
= (¢(z;) — dla;))" Wy My Wi (6(z;) — d(x;)),

where M, = Proj(E;_Zé - E;ZID) is the Mahalanobis
matrix on the subspace in RKHS. Here X}, 4 =
W15y sWy and 8%, , = W1, 5y pW,. Note that
the Mahalanobis matrix in H is obtained as My =
Wy My W7,

Because the linear projections learnt from the train-
ing samples lie in the space spanned by the samples, a
projection basis becomes:

wy = Y 0i6(@:) = Ba, ©)
where ® = [¢(x1),...,6(xN)] and a = [aq,...,an]T.
Thus, the r projection bases become W4 = PA,
where A = [ay,...,a,], and the linear projection of

o(x) becomes (Wy)To(x) = AT®T¢(x;) = ATz,
where z = &7 ¢(x) = [k(zy, ), ..., k(zyn, )] € RV is
an empirical kernel vector.

We see that d%Vn,M’H (z;, ;) in Eq.(5) is equivalent
to the following distance:

A arp (2i025) = (20— 2)) TAM AT (2 - z;), (D)

where M = Proj(EE}; EE}D) and
Skp = A'ScpA, g = ATScsA,
Skp = NLDZ(Z._’].)GD(zi — zj)(zi — z;)7 and

Yks= Nis 2 (jyes(zi—25) (2 —z;)". Note that the
Mahalanobis matrix for the empirical kernel vectors
{2} | is obtained as My = AM A",

Eq.(7) corresponds to Eq.(3) when we replace the
input vector « to the empirical kernel vector z and the
projection vector W to A. Thereby, we can implement
the kernelized XQDA straightforwardly by using the
empirical kernel vectors {z}}¥, instead of {z}¥; to
the input of XQDA algorithm. In the test process, we
also transform test samples into the empirical kernel
vector and measure the distance by Eq.(7).

4 Experiments
4.1 Datasets and Settings

Datasets and evaluation protocols. We evaluate the pro-
posed KXQDA on two public datasets: CUHK Cam-
pus [2] and Market-1501 [16]. The CUHK Campus
dataset contains 3,884 images of 971 persons. There
are two images of each person in each camera view. We
evaluate with both single-shot and multi-shot match-
ings. In the multi-shot setting, we calculate the dis-
tances between two persons by averaging the corre-
sponding cross-view image pairs. We report the av-
erage of 10 random person splits for the training/test
sets so that each set includes half person identities.
We calculate the Cumulative Matching Characteristic
(CMC) curve, which gives an expectation of finding

the correct person in the top r matches. From the
CMC curve, we especially report when r = 1 (rank-1
rate). For a measure to evaluate the whole CMC curve,
we also report the Proportion of Uncertainty Removed
(PUR), which represents the uncertain reduction by a
given algorithm from the random ranking [4].

The Market-1501 dataset contains 32,668 bounding
boxes of 1,501 persons. Each person is captured by
2-6 cameras. During testing, for each person, one
query image in each camera is selected. We use a fixed
750/751 person split for the training/test set. We re-
port the results of both single-query and multi-query
evaluations on 3,386 query persons. For the multi-
query setting, we averaged the feature descriptors of
different query images of the same person. For the
Market-1501 dataset, we report the mean Average Pre-
cision (mAP), which considers both the precision and
recall of the retrieval process [16] because the gallery
contains multiple images of one person.

Feature representation. We use Gaussian Of Gaussians
(GOG) descriptor [17], which is known as an effective
descriptor for person re-id [1]. The dimensionality of
the descriptor is 27,622. As suggested, we apply a
mean removal and L2 normalization for each feature.
Kernel. We use the kernel of Radial Basis Function
(RBF) with Euclidean distance. As used in various
articles, we use the mean distance of the training data
as the variance of the RBF kernel.

Regularization parameter. In practice, XQDA adds a
small regularizer € to diagonal elements of X g. In par-
ticular, we use ¢ = 1073 for XQDA in the original
feature space because it works well when the features
are normalized in unit length [5]. KXQDA uses the
empirical kernel vector as the input, and the norm of
the empirical kernel vector is unnormalized. We found
that the effective regularization parameter for KXQDA
is smaller than XQDA and use € = 10712,

4.2 Results

Comparison with baseline methods. @ We compare
the performance of KQDA with the following base-
lines: PCA-KISSME [3], XQDA [5] and Nystrom-
KISSME [9] 3. PCA-KISSME refers a method in which
the input features are projected into low-dimensional
subspace by PCA before applying KISSME. Nystrom-
KISSME firstly embeds an original feature into low-
dimension Euclidean space which approximate RKHS
by Nystrom method [11]. Fig. 1 shows the results on
various subspace dimensionalities.

We see that KISSME decreases its performance
when the feature vectors are projected into a lower di-
mension subspace by PCA. XQDA outperforms PCA-
KISSME in the lower dimensional spaces. These re-
sults are because the subspace projection of XQDA
considers discriminative information.

We also see that the KXQDA consistently outper-
forms XQDA in the original feature space. These
results confirm the improvement by kernelizing the
XQDA. KXQDA also outperforms Nystrom-KISSME.
The reason for these results is the same as XQDA out-
performs PCA-KISSME. Namely, Nystrom method ob-
tains the Euclidean space without supervised informa-
tion. In contrast, KXQDA maximizes the discrimina-
tive criterion, and thus more discriminative informa-
tion is retained.
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Figure 1. Comparison with baseline methods in
various subspace dimensionalities.

Table 1. Comparison of metric learning methods.

CUHK Campus Market-1501
Single-shot | Multi-shot || Single-query | Multi-query
Methods r=1 PUR| r=1 PUR|| r=1 mAP | r=1 mAP

PCA-KSSME [3] [[57.0 66.7|67.8 75.2[[60.2 35.2 [67.8 44.3
Nystrom-KISS. [9] || 58.6 67.8|68.3 75.8|/58.3 36.0 |66.0 43.8

XQDA [5] 57.9 66.8|67.1 74.8(|65.0 40.2 |74.0 50.1
KNFST [6] 60.8 69.4|70.3 77.1||66.6 424 |74.8 52.7
KXQDA 62.2 70.7 | 71.5 78.0 || 66.7 42.2 |75.1 52.3

We summarize the performance of the compared

methods in Table 1. In the table, the dimensionalities
of XQDA/KXQDA are automatically set by selecting
all eigenvectors greater than 1. For the dimensionali-
ties of PCA-KISSME and Nystrom-KISSME, 500 and
1000 are set for the CUHK Campus and Market-1501
datasets, respectively.
Comparison with another metric learning method. Fi-
nally, we compare the performance of KXQDA with
another metric learning method: Kernelized Null
Foley-Sammon Transform (KNFST) [6]. KNFST seeks
a subspace in which within class distances are zero (null
space), and between class distances are positive. The
subspace dimensionality is automatically determined
as the number of the null space, and there is no free pa-
rameter. We use the same RBF kernel to the KXQDA.
Note that the application of KNFST to person re-id
is more recently proposed than other metric learn-
ing methods, e.g., Local Fisher Discriminant Analy-
sis (LFDA) [4], a kernel extension of regularized Pair-
wise Constrained Component Analysis (rPCCA) [7],
Kernelized LFDA (KLFDA) [7] 4, Kernelized Marginal
Fisher Analysis (KMFA) [7, 18]  and XQDA [5].

Table 1 includes the results. We see that KXQDA
outperforms KNFST in both rank-1 rates and PUR on
the CUHK Campus dataset, and in rank-1 rates on the
Market-1501 dataset. These results are probably be-
cause that KNFST projects feature vectors into a null
space of within-class distances, whereas it only consid-
ers the subspace which has positive between-classes.
Thus, KNFST mostly focuses on the minimization of
within-class distances. In contrast, XQDA/KXQDA
maximize the ratio of these distances. Thus, the sub-

3 Another kernel version of KISSME expects much slower than
KXQDA because it adopts an iterative optimization on a Riemannian man-
ifold [9]. The recently proposed kernel-KISSME [10] is simpler than [9],
yet it does not accompany with the dimension reduction. Thus, the match-
ing process is expected slow.

4Compared to KXQDA, KLFDA [7] and KMFA [7] require an ad-
ditional computation step to obtain neighborhood graphs for covariance
matrices. Besides, only KXQDA uses KISSME on the projected space.
With the same RBF kernel and regularization parameter to KXQDA, PUR
scores on the CUHK Campus dataset (single-shot) with 500 subspace di-
mensionality were 70.5% and 70.7%, respectively for KLFDA and KMFA.

space which has a better discriminative ability of dif-
ferent classes could be obtained. Also, cross-view re-
strictions in the covariance matrices and KISSME in
the projected space could be the cause of better perfor-
mance of KXQDA. The superior performance of KN-
FST to XQDA is because KNFST is kernelized. By
kernelizing XQDA, KXQDA outperforms KNFST on
these datasets.

5 Conclusion

We have proposed a kernel extension of XQDA which
obtains a low-dimensional discriminative subspace in
RKHS, and simultaneously KISSME in the learned
subspace. In the experiments on person re-id datasets,
the kernelized XQDA showed improved performances
of XQDA and also outperformed Nystrom-KISSME.
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Appendix

An insight on the Mahalanobis matrix of XQDA

An eigenvalue A of g sy corresponds to op/os.
Because the subspace op < og may provide no dis-
criminative information, a reasonable criterion to de-
termine the subspace dimensionality is to use all eigen-
vectors whose corresponding eigenvalues are greater
than 1 [5].

To have a valid metric on the subspace, the Maha-
lanobis matrix M’ must be positive-semidefinite. The
following proposition shows that we need no projection
operation for M’, as far as we select subspace bases by
the aforementioned criterion:

Proposition.2 The Mahalanobis matriz M' in the
XQDA is diagonal and PSD matriz if we select the
eigenvectors corresponding eigenvalues A of EglED
are greater than 1.

Proof. This is because the eigendecomposition of the gen-
eralized Rayleigh quotient maximization is obtained as
a result of simultaneous diagonalization of matrices 3 p
and Xg [12]. Namely, the eigenvectors W diagonalize
Yp and Xg as WIS pW = diag(op.y,- - - 0p,) and
WS W = diag(os.1,- - -,0s,). Thus,

_ -1 - - -1 A
05,1 95,1
M = : -
—1 —1
L GS,T . L US,T i
~ 1 - ~ 1 -
gs,1 Js,1
1 1
L os,r 4 L og,r 4
[ oD,1—0s,1
035,10D,1
ODr—0S8,r
L JS,r0D,r

If we select the eigenvectors whose corresponding eigen-
valueA:i—’;thhenaD—aszo. O

We note that replacing Singular Value Decompo-
sition (SVD) applied to (¥g')Ep in the Matlab
code’ (line 148) to the eigendecomposition is neces-
sary to validate this proposition. In fact, using SVD

here produces no longer the solution of the generalized
Rayleigh quotient maximization of XQDA. This is be-
cause for symmetric matrix A, each of the decomposed
matrices of SVD is given as A = VDUT, where D is
the diagonal with the square-root of the eigenvalue of
AAT V and U7 are the eigenvectors of AAT. There-
fore the SVD corresponds to the eigendecomposition
of (Z5")Ep((25")Ep))T. We have fixed this misuse
and conducted all experiments in this paper.

Computation of covariance matrices

A direct computation of £ and X p costs O(Ngd?)
and O(Npd?) floating-point operations. Because most
of the sample pairs are dissimilar pairs, Np grows with
the order O(N?). We can use a practical computation
method with the cost of O(Nd?) floating-point opera-

tions [5] only for the case of two-camera views. When
multiple cameras exist, we need to divide all samples

into two views of all camera combinations and combine
their covariance matrices.

For handling the multi-camera setting naturally,
we propose to compute the covariance matrices using
graph Laplacian [18]. For each of the sample index
sets of similar/dissimilar pairs, an (7, ) element of an
affinity matrix is set to 1 or 0 based on the existence
of the pair (¢,7) in the set. The computational costs
using the graph Laplacian for X¢ and Xp are both
O(max(N?d, Nd?)) floating-point operations, equiva-
lent to the practical computation [5] when N < d.

Table 2 shows the empirical time for constructing co-
variance matrices, measured by a computer equipped
with an Intel Xeon E5-2687W v3 @3.1GHz. The graph
Laplacian shows faster empirical times than the prac-
tical computation method [5]. Relatively significant
time reduction by the graph Laplacian on the Market-
1501 dataset is because it has 6 cameras, whereas the
CUHK Campus dataset has 2 cameras.

Table 2. Empirical time of covariance matrix
computations for XQDA/KXQDA (sec.)
’ “ CUHK Campus [[  Market-1501 |
Methods [XQDA KXQDA [[XQDA KXQDA |

Practical computation [5][| 0.502  0.412 128.3  129.2
Graph Laplacian 0.366 0.369 51.9 51.8

Shttps://github.com/liangzheng06/PRW-baseline/
blob/master/utils/LOMO_XQDA/code/XQDA.m



